

Master Thesis

Application of Proxels

to

Queuing Simulation with Attributed Jobs

Author: Wenjing Xu
 Master of Computational Visualistics

Supervisors: Prof. Dr. Graham Horton

Claudia Krull

 Work Period: October 1st, 2007 – March 1st, 2008

i

Abstract

Queuing Theory is a branch of simulation which strives to provide analytical

solutions to a number of queuing problems. If there is not analytical solution

available, discrete event simulation is the commonly used method when facing

queuing problems, but it has the drawback of being stochastic and only being

able to solve the single specific parameterized problem. Compared to DES,

using Proxels can provide deterministic result and make queuing simulation

more efficient. But the current implementation does not support attributed

customers, and therefore most queuing discipline are not included yet.

The goals of this thesis are expanding the application of Proxels to queuing

simulation by adding the attributes to the jobs, and presenting the effect on

the system performance by several planned experiments, finally proving the

Proxel-based queuing system simulator is suitable to handle job’s attribute with

some accepetable restrictions.

ii

Acknowledgments

I would like to use this opportunity and express my gratitude to all the people

who gave me help and their support.

I am particularly thankful to:

·Professor Graham Horton for his guidance, support and his constant

encouragement throughout the whole process of this thesis work.

·Claudia Krull who walked me through all the stages of writing this paper and

gave me timely help to solve any kinds of problems during the work although

she was in the vocation of having a baby.

·My father Xu Genying and my mother Ma Hongjie who gave me all their love,

support for my study and everything in my life. My grandma’s love and

expectance is also the energy for my effort.

·My uncles Sha Hong and Sun Jianan who give me their help and loving care

from the first day when I arrived in Germany.

·My boyfriend Yang Yue who always holding my hands whenever good or bad

moments.

· My friend Wang Yao who always gives me her encouragement and pray for

my success.

iii

Self-Work Statements

Here with I declared that I have completed this work by myself and only with

help of stated references.

Xu Wenjing

Matrikelnummer: 173683

Magdeburg, 10, February 2008

iv

Contents

1 Introduction 1

1.1 Background ...……………………………………………………………………………….1

1.2 Motivations ………………………………………………………………………………….3

1.3 Goals of the Thesis ……………………………………………………………………….4

1.4 Structure of the Thesis …………………………………………………………………5

2 Relevant Basic and Existing Approach 6

2.1 Fundamentals of Queue Theory…………………………………………………..7

2.1.1 Preliminaries of Queuing System………………………………………...8

2.1.2 Queuing Strategies ……………………………………………………………. 9

2.2 Proxel-baesd Simulation ……………………………………………………………11

 2.2.1 Fundamentals of Proxel-based method ……………………………11

2.2.2 Method Description ………………………………………………………….12

 2.3 Application of Proxel in Queuing Simulation ……………………………..15

 2.3.1 Implementation ………………………………………………………………..15

 2.3.2 Example…………………………………………………………………………….17

 2.3.3 Evaluations of the Simulator………………………………………………18

3 Jobs’ Attributes Adding in Proxel-Queuing System 19

 3.1 Choosing Jobs’ Attributes …………………………………………………………..19

 3.1.1 Criterion of Attributes Selection………………………………………….19

 3.1.2 The Detail of Three Attributes ……………………………………………21

3.2 Adding Jobs’ Attributes……………………………………………………………….24

 3.2.1 Preparation of Adding Attributes ………………………………………24

 3.2.2 Adding Priority ………………………………………………………………….27

3.2.3 Adding Processing Time …………………………………………………….31

3.2.4 Adding Deadline ……………………………………………………………….34

3.3 User Interface…………………………………………………………………………… 36

 3.3.1 Preprocessing of User Interface Adjustment……………………..36

 3.3.2 User Interface Adjustment ……………………………………………….37

v

4 Experimental Verifications 40

 4.1 Experiments Plan ………………………………………………………………………41

 4.2 Validation Experiment: 2 Priority Levels ……………………………………42

 4.3 Benchmark Experiment 1: n Priority Levels ……………………………….45

 4.4 Benchmark Experiment 2: Variation of Probability Proportion ….47

 4.5 Discussion of the Results …………………………………………………………..51

5 Conclusions and Future Work 53

 5.1 Summary …………………………………………………………………………………..53

 5.2 Conclusions ……………………………………………………………………………….55

 5.2.1 Contributions ……………………………………………………………………55

 5.2.2Restrictions ……………………………………………………………………….56

 5.3 Outlook ……………………………………………………………………………………..57

Reference 59

1

Chapter 1

Introduction

As the first chapter, the introduction firstly presents the background of this

thesis and then states the motivation of choosing this theme in Section 1.2. The

contents of tasks are specified in Section 1.3. Finally comes the structure of this

thesis in a whole scene.

1.1 Background

Computer simulation is the way to modeling a real-life or a hypothetical

situation on a digital computer, and analyzing the execution output, studying

its behavior. In our daily life, computer simulation becomes more and more

useful as a part of modeling many natural systems in physics, biology,

machinery, economics and so on. Discrete event simulation is an operation that

represents a system as a chronological sequence of events. Each event occurs

at a point in time and marks a change of state in the system. A queuing system

is one typical kind of discrete event simulation.

The goal of the analysis of a queuing system is finding analytical expressions for

such performance measures as queue length, throughput and utilization.

Queuing is an aspect of modern life that we may encounter any place and any

time in our daily life. In the banks, people stand in a line in front of the counters

and wait for the service. In the supermarkets, people wait in the queue to pay

1.1 Background

2

for the goods. Although there are no people stand any line in the barber shop,

the customers will be served in the sequence they arrive. In Figure 1.1, it is a

picture of a real queue we can see everywhere. Obviously the basic

components of a queuing system are queues, servers and customers. The study

of queuing is able to provide both a theoretical background to the kind of

system and the way in which the system itself may be designed to provide

some specified grade of service to its customers. In queuing theory, a queuing

model is used to imitate a real queue situation. The queuing behaviors can be

analyzed mathematically by the performance measurements calculation. The

performance measures are very important since they are often relevant with

the work efficiency or economical losses of a real queuing system, such as an

assembly line design. Therefore more accurate and deterministic results are

expected in queuing system analysis.

Figure1.1 Queue (http://en.wikipedia.org/wiki/Queue_area)

Sometimes when there is no analytical expression can generate deterministic

performance measurements for queuing models, discrete event simulation is

commonly used as an alternative. But it seems not a perfect way since it has

the drawback of being stochastic and only being able to solve the single specific

parameterized problem. Compared to DES, using Proxels can provide

deterministic result so that it is more suitable for the queuing simulation (more

http://en.wikipedia.org/wiki/Queue_area

1.2 Motivation

3

details is in [2]).

The Proxel-based method is one simulation way which can be seen as the

hybrid of the experimental and the numerical method because it contains the

features of both classes of the methods. It is a state space-based simulation

method, which generates the state space on-the-fly. The approach actually is

the process that turns a non-Markovian model into a discrete-time Markov

Chain (DTMC). This method does not require replications and produces

deterministic result with an arbitrary accuracy for a discrete stochastic

simulation model. “Proxel” is a term as an analogy of pixel which is constructed

from “probability element”. A Proxel contains enough information for

determining the transition probabilities in the next possible states, using so

called instantaneous rate function.

1.2 Motivation

In the paper [2] wrote by Claudia and Horton, it describes the general approach

and a tool implementing the Proxel-based simulation of queuing systems. And

there are experiments validate the method and show the range of applicability.

Still, the current implementation does not include all possible elements.

Therefore the current tool can support the queuing system simulation easily

and basically but the functions are not complete. Most queuing disciplines are

not included yet because the current work does not support attributed

customers. The simulation tool is restricted to process the queue in the most

basic sequence FIFO. However queuing strategy is one of the essential

elements of queuing system, it’s the rule for ordering the jobs in the queue.

Each queuing system of different strategy is modeled for different goals. Their

goals can be some of the following: fairness, maximize throughput, minimize

overhead, minimize waiting time, avoid infinite postponement, graceful

degradation and enforce priorities. In order to achieve different goals, a

queue may call for different strategies. The commonly used queuing strategies

in a queue model are First In First Out, Last In First Out, Shortest Job First,

Round Robin, Upper Time Limit, and Shortest Remaining Time, sometimes the

1.2 Motivation

4

queue strategies are also mixed. What kind of queuing strategy one chooses

depends on what kind of goal one wants to achieve.

Therefore adding attributes of jobs in the queue becomes the chief future work

of applying Proxel-based simulation of queuing systems.

In the Proxel-based simulation algorithm, the initial Proxel is created and for

every simulation time step the successive Proxels are created. Following the

algorithm, the implementation was structured modularly, so that an extension

to attributed jobs is possible. However, adding attributes to the jobs will

significantly increase the state space of the resulting model. Therefore the

storage of attributes and the method to add the attributes into Proxels will be

the greatest challenge.

1.3 Goals of the Thesis

1) The first goal: The Proxel-based Queuing System simulator can handle

attributes successfully.

The current simulator is a basic queue simulator which uses the Proxel-based

method. After several tests, the simulator was verified that all the elements

work well. The future work of it is upgrading the simulator’s functions and

improving the simulator’s capacity. Until now the simulator treated each job as

the same, so in each discrete state we only need to consider the number of the

jobs in the queue. Due to the reason of no queue strategies in the simulator,

the main task of the future work is adding attributes to the jobs. This motion

involved by many factors, such as the Proxel structure, the storage of the

attributes, the performance calculation etc. Therefore successfully add

attributes to the jobs in this simulator is the main goal of this thesis.

2) The second goal: Show the influence of adding attributes to the queuing

system

1.3 Goal of Thesis

5

The method of adding attributes will change the structure of the queue Proxel.

The size of the Proxel will be enlarged. Besides the structure of the Proxel, the

main effect of adding attributes is expanding the state space significantly.

Therefore the result including the performance measures, the amount of the

processed Proxels and the computational time will be different from the no

attributes situation. In order to control the attributes adding properly, such as

the data type of the attributes, the storage or the algorithm adaption, we must

make it clear that what kind of influence the attributes adding will bring and

how the extent of the influence is. Some negative influence may be avoided or

limited in a small range by adjusting the attributes data type, value set or the

storage data structure. All in all, presenting the situation after adding attributes,

reducing the negative effect to the lowest level and get a suitable way of

attributes adding to the existing simulator is the other goal of this thesis.

3) The third goal: Display the suitability of adding attributes

The original Proxel-based queuing system simulator has only one queuing

strategy FIFO. After successfully adding attributes, the adapted simulator can

analyze more than one different queuing system. Therefore the range of

queuing systems extends which the simulator is able to handle, although in this

thesis only three attributes are planned to be added. Through the experiments

of comparing the results which are generated by the attributed job system and

non-attributed job system, the system can be proved that it still keep

steadiness and accuracy of the performance measures. The influences of

adding attributes also help to figure out that the approach described in this

thesis is on a correct direction on the way of adding attributes.

Displaying the suitability of adding attributes following the process which

stated in the thesis is the last goal of the project.

1.4 Structure of Thesis

The concept of this thesis will be organized into five chapters. The first chapter

is the introduction. It will give an overview of the background knowledge and

1.4 Structure of Thesis

6

the current method in this research field. The motivation of doing such a

research theme is the important point in the part of introduction and the goals

of the thesis are clearly stated. The second chapter is the description of the

existed methods, the application of Proxel-based method into queuing system.

The simulator is also showed in this part and including the evaluation of it, the

advantages and disadvantages are discussed in this section. The future work of

this simulator which is relevant of the thesis is finally described in the end of

second part. The core content of this thesis is the third chapter. It describes the

process of adding attributes specifically. The design of the approach and

implementation of the plan are explained in this section. In the fourth chapter

the experiments and the results presentation are shown. Each experiment and

the results explanation are designed according to the performance criteria

required to the analysis and proposed approach. The last chapter gives a brief

summary of the results to conclude the thesis. Of course it also provides some

suggestion of the improvement and a prospect of future work.

7

Chapter 2

Relevant Fundamentals and Existing

Method:

Proxel-based Method and Queue Theory

This chapter provides an introduction to fundamental knowledge along with

the thesis and the existing approach which is advanced later in Chapter 3. In

Section 2.1 we present the foundations and some commonly used terms of

queuing theory and Proxel-based method. Furthermore in Section 2.2, the

existing approach of using Proxel-based method to simulate queuing system is

established, and also a discussion of its advantages, drawbacks and the future

work.

2.1 Fundamentals of Queuing Theory

This section addresses the issues, which we classified as preliminary or

necessary for understanding the basic principles of the Proxel-based queuing

system simulator. The queuing theory and Proxel-based method which

combined in the existing simulator are interpreted separately here; firstly is the

theory of queuing system, a classical discrete stochastic model.

2.3 Application of Proxel-based Method in Queuing System

8

2.1.1 Preliminaries of Queuing System

Many real systems can be modeled as networks of queues, such as the waiting

line in a bank, a bus stop. A queuing system can be described as customers

arriving for service, waiting for service if the servers are occupied, and leaving

the system after own service being finished.

One can begin the understanding queue theory with Little’s Theorem. Little’s

Theorem states that: The average number of customers N can be determined

from the following equation:

N=λ*T
Here λ is the average customer arrival rate and T is the average service time for

a customer (detail can be found in [4]).

With Little's Theorem, the basic understanding of a queuing system was

developed. A queuing system has three essential characteristics: arrival process,

service process and number of customers.

 Arrivals Departure

 Waiting Positions Server

Figure 2.1 a Standard Graphical Notation for Queues

In Figure 2.1, it is a standard graphical notation for queues. The open

rectangles with slots represent queues, and circles represent servers. The path

is expressed as lines with arrows. Although the graphical notation expressive

depicts the process of queuing system, it doesn’t distinguish between tokens.

As a result queuing strategies cannot be represented.

Until now, queuing systems have been well studied. As the shorthand for

describing queuing processes, Kendall’s notation was evolved. A thorough

description of it can be seen in reference [4]. The notation describes a single

2.3 Application of Proxel-based Method in Queuing System

9

process as a series of symbols A/B/X/Y/Z,

Where

 A: is the inter-arrival distribution of the customers

 B: is the service time distribution

 X: the number of parallel servers

 Y: the maximum number of customers allowed in the system

 Z: scheduling discipline/queuing strategy

In many situations only the first three symbols A/B/X are required because they

are the three most important characteristics. Y is omitted if no restriction

(default Y=∞) and the queuing strategy is FIFO (FCFS).

When analyzing a system with a single queue, the most common performance

measures are obtained as following:

ρ: Server utilization describes the fraction of time that the server is busy, or

the mean fraction of active servers, in the case of multiple servers.

λ: Throughput describes the number of jobs, whose processing is completed

in a single unit of time.

Q: Queue length is the number of jobs waiting in the queue at a given time.

W: Waiting time is the time that the jobs spend in the queue waiting to be

served.

 K: The number of jobs in the system at a given time.

 πi: The probability of a given number of jobs i in the system.

In queuing theory, almost every queuing system can be represented by

Kendall’s notation and analyzed as the above performances measures.

2.1.2 Queuing Strategies

Since one task of this thesis is adding attributes to the jobs in the queue, it

means the queue in the whole system can be ordered according to different

strategies. The following paragraphs present several basic queuing strategies

definitions, more introductions can be found in [6].

2.3 Application of Proxel-based Method in Queuing System

10

A queue strategy determines the discipline for ordering jobs in a queue. It

defines the order in which they are served and the way in which resources are

divided between the customers. There are two main categories of strategies:

Static or dynamic priorities and Pre-emptive or Non-pre-emptive

Figure 2.2 categories of queuing strategies (see [6])

In this thesis only the static and non-pre-emptive strategies are considered,

because they are representative and most commonly used in queuing systems.

Here are details of several queuing strategies:

First In First Out (FIFO): Jobs are ordered according to their arrival times. The

job that has been waiting the longest is served first. This kind of queue is the

most commonly used model because there is no differences between jobs. It is

a fair queuing strategy and low overhead. There is no infinite postponement in

such a queue. But long jobs may let the short jobs wait for a long time.

Priority Queue: Priorities are a measure of urgency or importance. Each job is

assigned a priority and the jobs are sorted in the queue by their priorities. Low

values represent high priorities. If some jobs have the equal priorities, the

secondary criterion is used to sort jobs, such as FIFO.

Shortest Job First: Jobs are ordered by smallest estimated processing time. The

shortest job is served first. So the waiting time of short job is small. But the

latent danger is that the longer jobs may be infinitely postponed.

Deadline Scheduling: Each job has a deadline by which the job must be

completed. Run the job whose deadline is the closet. This queuing strategy can

2.3 Application of Proxel-based Method in Queuing System

11

also be seems as a priority queue, because the deadline is a measure of

urgency. The most urgent job can be served first and each job can be

completed on time. But it may be not fair to the jobs whose deadline is a long

term.

Mixed Strategies: Queuing model is always used for simulating and analyzing

real world situation. Therefore the queuing strategies are often combined.

Such as in a computer system, the jobs can be sorted by urgency priorities and

also can be sorted by some non-pre-emptive strategy.

In this thesis, after the approach analysis and the attributes choosing, we will

focus on the priority queue, shortest job first and deadline scheduling these

three queuing strategies. The specific process for each queuing strategy will be

described in later part (Section 3.2).

2.2 Proxel-based Method

This section provides an introduction to the basic terms of Proxel-based

method and the algorithm description which are used throughout the thesis.

2.2.1 Foundations of Proxel-based Method

The Proxel-based simulation is a numerical approach for analyzing stochastic

discrete models， it contains the features of both experimental and numerical

approaches. Compare to the experimental approach, discrete event method,

the Proxel-based method does not use random numbers. On the other hand,

compare to the existing numerical approach, it avoids using partial differential

equations by implementing the method of supplementary variables. In a very

intuitive manner, the Proxel-based method follows the flow of probabilities

corresponding to the behaviors of the model. These features enable the

Proxel-based method can provide deterministic results and be obtained to an

arbitrary accuracy. At the moment when no closed analytical expressions can

be derived for some queuing system models, discrete event simulation might

2.3 Application of Proxel-based Method in Queuing System

12

be used as an alternative in previous time, but now Proxel-based method

provides another choice.

This method operates directly on the model’s state space whose generation is

on-the-fly. The idea behind the Proxel method is to approximate the stochastic

discrete process in a continuous approach using a discrete time step dt. This

yields a computational model which consists of a set of discrete states at each

discrete time step with corresponding probabilities. Proxel, which as a term is

an abbreviation of the phrase “probability element”. It is the core computation

unit of the Proxel-based method and it carries the adequate amount of

information for generating its successor Proxels. The necessary elements and

the information that each Proxel contains are the following:

• The discrete state which the model is in

• The relevant age information, also called age intensity vector, which track the

time that each of the possible state changes has been pending

• The global simulation time which represent the total time from the start of

the simulation

• The probability that the system is in the current discrete state with the

corresponding age intensities.

In a formal, each Proxel can be represented as follow:

Proxel = (State, Age intensity, Time, Probability)

Proxel, as the component element of Proxel-based method, is structured as the

above description and it stores the necessary information for depicting any

probabilities configuration of a model. One can see Sanja’s paper [12] for more

thorough description. Next how are the Proxels implemented in the whole

simulation process is introduced.

2.2.2 Proxel-based Method Description

In any system, at the time step 0, the initial Proxel is added.

2.3 Application of Proxel-based Method in Queuing System

13

Initial Proxel = (Initial State, 0, 0, 1.0)

Once the initial Proxel is added, the simulator generated its successor based on

the possible state changes, update the age intensity vector and calculate the

probabilities. If the successor’s state is different from the initial one, the age

intensity variable is reset to zero or set as irrelevant. Otherwise if the successor

Proxel stays in the same state of the initial one in the next time step, then the

age intensity variable is incremented by the size of time step dt. Once the

second generation of Proxels is computed, the initial Proxel can be thrown

away. The next generation is computed in the same way with the second one.

This procedure is repeated during the whole simulation process until reach the

end of the simulation time.

Let’s see an example to demonstrate how the Proxel-based method works. In

Figure 2.4, it is a two-state model which has two possible state changes that

switch between the two discrete states, S (sunny) and R (rainy).

Figure 2.4 Example State Diagrams

At time step 0, let Sunny be the initial discrete state and the time step is dt. In

state S, it is the age intensity vector of the state change from Sunny to Rainy,

distributed according to the distribution function FSR. And in R, it is the opposite

situation, tracking the age intensity of change from R to S, distributed according

to function FRS. After generating the initial Proxel ((S, 0), 0, 1.0), at the second

step t=2dt, the model can either stay in the state S or change to state R. The

age intensity is incremented by dt for the former situation or is reset to zero

when the state change happens. The probability is calculated by the

2.3 Application of Proxel-based Method in Queuing System

14

instantaneous rate function μ (τ), integrated along the time step, where τ is the

age intensity vector for the active state change.

Probability = 𝜇 (𝑥)𝑑𝑥
𝑑𝑡

0
,

The IRF (instantaneous rate function) is generated from the distribution

functions CDF and PDF (details see [12] Section 2.1.1). So the second proxels

are following: ((S, dt), dt, *) and ((R, 0), dt, *), the probabilities are omitted for

the reason of simplicity. At each step, proxel based approach generates a

number of proxels for all possible discrete states. The whole process can be

described as a tree stucture. This tree structure is named Proxel tree. In Figure

2.5, it is a Proxel tree of the Sunny and Rainy model, the first four steps.

Figure 2.5 a Proxel Tree of The First Four Steps ForThe Example of Figure 2.4

From step by step, more and more Proxels are generated. From Figure 2.5, we

can find in the fourth step, there are two pairs of Proxels which are connected

by straight lines, their discrete states and age intensity are the same. We define

the Proxels have this situation are the same Proxels and add their probabilities

together. This reduces the state space storage by keeping one Proxel for one

2.3 Application of Proxel-based Method in Queuing System

15

kind. Therefore in the example, at fourth step, we only need to consider six

Proxels.

The theory and a simple example presented in this section show the basic

operation disciplines of Proxel-based method. Further, in Section 2.3, applying

Proxel-based method for simulation queuing system is stated in detail.

2.3 Existing Approach: Application of

Proxel-based Method in Queuing System

After describing the fundamentals of the queue theory and Proxel-based

method, in this section, we will present the existing approach which combines

the queue theory and Proxel-based method together. Furthermore we

demonstrate how this simulator works and give some evaluations for it.

2.3.1 Implementation

The Proxel-based method can be applied to any discrete event system. A

queuing system is one of the classical discrete event systems. Because stable

queuing systems that can serve jobs faster than they come, have a steady state

solution, this approach only consider these systems. The implementation starts

from an initial system state and determines the possible next states and the

transition probability within the discretization time step. Based on the queue

theory and characteristics of a queue system, the state parameter of the

queuing system is stored into the Proxel data structure directly as its elements:

 Px = (q, s , τq, τ s, p)

Here with the elements meaning:

q: the number of jobs in the queue,

s : the occupation status of the servers,

2.3 Application of Proxel-based Method in Queuing System

16

τq: the age of the arrival process,

τ s: the ages of the different service processes,

p: the probability of the combination

With the Proxel data structure, after the initial Proxel created, the generation

of the next states in every simulation time step is performed. The remaining

number of jobs in the calling source is encoded if specified. There are three

states for such a queuing system, the job arrivals, the job’s service is finished

and stay the same status. In the algorithm, for each Proxel, the three kinds of

probabilities are calculated. If the arrival probability is more than zero, the

arrival Proxel will be generated. If the service finished has a positive probability,

the service finished Proxel is created. The stay Proxel is generated when the

stay probability is above zero. At each time step, the same loop is performed.

The simulation time is controlled through the user interface.

After the simulation of the model, the performance measures are calculated

from the simulation result to obtain the relevant information. For each

implementation, we get the following result of both transient and average:

Transient server utilization and average utilization,

Transient queue length and average queue length,

Average job waiting time,

Transient number of jobs in the system and average number,

Transient probability for a defined number of jobs

The above description presents the algorithm underlying the Proxel-based
queuing system simulator. Next an example is used to show the
implementation process of the simulator which operated by users.

2.3 Application of Proxel-based Method in Queuing System

17

2.3.2 An Example

The user interface is also designed in order to analyze and parameterize a

queuing system clearly. A user can specify the queuing system, execute the

simulation, plot the transient results and read the performance measures via

this graphical user interface. The following example demonstrates how this

simulation tool works. It is a queuing system M/G/1 which has a Markovian

arrival and general service process and two servers.

Figure 2.6 User Interface for Queue Simulation Using Proxels (left) and

Probabilities of Jobs’ Number in System (right)

In left image of Figure 2.6, the arrival rate is set as μ1 = 0.5, and service

parameters are N (2.0; 2.0) in the upper part of the GUI. In the middle part of

the interface the time step, number of servers, system capacity, calling source

size and simulation time can be modified. When all options are ready, user

clicks the “start simulation” button. The lower part shows the simulation

output. The average and steady state values of five performance measures are

2.3 Application of Proxel-based Method in Queuing System

18

represented after the simulation. The plot buttons are used for the graphs of

transient values of these measures. The two upper buttons display plots of

queue length and jobs in system, the five lower plot buttons are for transient

values of each performance measures. When any plot button is clicked, the

plot graph for the corresponding measures is represented as the right image in

Figure 2.6.

2.3.3 Evaluation of the Simulator

This application of Proxel-based method in queuing system can be seen as an

alternative to discrete event simulation of queuing models, since it provides

deterministic both transient and steady state results for the performance

measures. It can solve some stiff problems more quickly than using discrete

event simulation even the discrete event simulation can’t solve. In paper [2],

there are more details of different benchmark experiments. They showed the

results of different parameterization of the queuing system.

Until now, this simulator is treating the queue system with the no-attribute

jobs. It means there is only one queuing discipline in the queuing system, FIFO.

Although the state space will be significant increased after adding job

attributes, and this is the bottleneck of the Proxel-based method, if we control

the attributes value in a small set and structure the algorithm properly, adding

attributes to the jobs in the queue is can be implemented. This is what we

introduce in next chapter and the core concept of this thesis.

19

Chapter 3

Adding Attributed Jobs in Proxel-Queuing

System

In this chapter we provide a specific description for the process of adding

attributes to the existing simulator. In Section 3.1, the selection of attributes

and the reasons are discussed. Then in Section 3.2, the method of adding

attributes to the algorithm, programming complexity are established and also

the effect to the original algorithm in theory. Finally, in the last section, the

improvement of the user interface is showed.

3.1 Choosing Job Attributes

This section is the description for the job attributes selection. First portion

presents the essential factors to be considered. In the second portion, the

selected attributes and values are shown specifically.

3.1.1 Criterion of Attributes Selection

How to solve the problem that the existing simulator is not able to process the

queuing system models without queuing strategies? The root cause is that the

jobs in the queuing system are without attributes. Jobs attributes represent

3.1 Choosing Job Attributes

20

instead job specific information and specify in some way actions that have to

be performed for scheduling the jobs. Choosing proper types and values for the

attributes of the jobs in the queue is the essential preparation before attributes

adding. On the one hand, the attributes in the different queuing strategies are

the samples for selecting. On the other hand, the features of Proxel-based

method must be considered.

In Section 2.2.2 several representative queuing strategies are introduced. For

the job without attributes, the basic strategy FIFO is used in the queuing model.

If the jobs are attached different levels of priority, the queue of jobs is the

priority queue. Each job can also be attached a processing time or a deadline as

their attributes. Since the attributes adding is the first try to the existing

simulator, it is better to choose the common and classical queuing strategies.

Therefore at the first glance, the following three attributes are focused: priority,

processing time and deadline.

The idea behind the Proxel-based method is predicting all the things might

happen in the next time step by considering all the information at the current

moment. So at each time step, it generates all possible success Proxels for each

current Proxel. Actually the Proxel-based method is a state space-based

simulation, which generates the state space on-the-fly. Adding attributes will

significantly increase the state space. For this reason avoiding state space

explosion is the chief goal when selecting attributes. As the introduction in

Section 2.2.2, there are two main categories of queuing strategies: dynamic or

static and pre-emptive or non-pre-emptive. Dynamical queuing strategy means

the attributes might be change in any point of time. In the Proxel-based

queuing simulator, at each time step, the probabilities of all possible states at

next time step are calculated, so that the possible states should be foreknown.

Dynamical attributes may raise the difficulty of predicting the possible states

and the probabilities calculation of them. In the other hand, it is difficult to

control the state space increasing rate. If the attributes levels change to a large

number and the arrival probability is more than zero, then the number of

success Proxels will be a large number accordingly. Use static attributes, the

principle of ordering jobs is clear and the calculation of state probabilities can

use a proper and steady method. Compare dynamic and static attributes, the

static attributes are obviously easy to implement. Consider the pre-emptive

3.1 Choosing Job Attributes

21

and non-pre-emptive queuing strategies. Pre-emptive queue means when a job

with higher priority comes, the service for a lower priority job will be

interrupted. In this way, the service Proxel is difficult to structure, and must

find another way to record the age intensity variable because the state might

be interrupted in the middle. Relatively, non-pre-emptive queuing system can

ensure each state has a complete process. The Proxels do not need to store the

interrupted jobs additionally. After the above thinking, the static attributes:

priority, processing time and deadline with non-pre-emptive discipline is the

final decision of job attributes choosing.

3.1.2 The Detail of Three Attributes

After the concepts of the objective attributes are determined, the next step is

discussing the details of attributes, such as the type, values.

1) Priority: a measure of urgency or importance

Besides the FIFO queuing strategy, the priority queue is the most commonly

applied in queuing system modeling. For example, in a hospital, the customers

with emergent state of an illness should be handled first. When simulate such a

queuing system, the priority as the attributes of jobs in the queue is the best

way to measure the urgency or important extent.

To represent the levels of priority, the integer data type is the most suitable.

Integers are not only able to measure the different priorities, but also easier

than other data type for the following treatment in the whole algorithm, such

as id calculation, jobs ordering. Furthermore, the storage of integers does not

need a large space. In the arrival process, when a new job comes into the

queue, it will be assigned an integer as its priority. Then the queue of jobs is

reordered according to their priority values. The value is lower, the priority of

job is higher, and the job is arranged at the more forward position in the queue.

The situation must happen that some jobs are assigned the same priority

values, at this moment the queue need a secondary ordering criterion,

generally the FIFO is applied.

3.1 Choosing Job Attributes

22

Figure 3.1 Example of a Priority Queue

(image from the slide of [6])

In Figure 3.1, the rectangle represents a queue of jobs with priorities, and the

open side is the access for new jobs coming. The circle is the server which the

jobs are waiting for. In the queue, the jobs with priority 1 are in the front of the

jobs with priority 2. In the sub-queue of jobs with priority 1, the arrival time

point is the secondary attributes. The job that arrived at time point 5 stands in

front of the job came at time point 7. Therefore the job which has the highest

priority and earliest arrival time will wait for the least time to be served.

2) Processing Time: a measure of jobs’ length

Shortest Job First queuing strategy is sometimes applied in the internet

dispatch system. This kind of algorithm can let the shortest jobs be finished

quickly, furthermore can suffer a traffic congestion in a queuing system model.

In the Shortest Job First queuing system, processing time of the jobs is the

information to be focused. When a new job arrives, it will be attached a

processing time which can measure the length of this new job. After new job

getting into the queue, the jobs in the waiting queue is reordered. As the name

of the queuing strategy, the shortest job is put in the front of the queue in

order to be served first. The same as priority queue, if there are several jobs

with the equal processing time, they are ordered according to their arrival time

points. Generally in the common queuing system, the processing time of the

jobs should be represented by double data type. But in the Proxel-based

queuing system whose algorithm is structured step by step although the

simulation time and the dt are still double data type. Therefore instead of a

double data type, the processing time is decided to be represented using an

integer which measures the amount steps of each processed job. Compare to

the priority queue, there is a problem of Shortest Job First that it requires a

3.1 Choosing Job Attributes

23

priori knowledge of processing time. The priority can be set definitely before

simulation, but the processing time is relative to the service process so that it

needs to find a proper way to calculate the processing time out before the job

coming. Additionally, to avoid the state space explosion problem, the values of

the processing time must be controlled in a small set. And the processing time

is according to the service distribution functions, so the calculation is more

complex. In Section 3.2.2 the specific calculation method is described.

3) Deadline: a measure of urgency

 The jobs are attached a time limit in some conditions, for example the work in

a memorandum. In such a queuing system, each job must be completed by a

specific time. Deadline is another expression for a time limit, and it’s also a

measure of job’s urgency.

 Similar with the above two attributes, a deadline is added to each job when it

arrives into the queue. Then reorder the queue according to the jobs’

deadline. After the arrangement, the new coming job is put behind the jobs

whose deadlines are equals to it and in front of the job whose deadline is

farther than it. From the meaning of the word “deadline”, it should be a time

point. But in a model of queuing system, setting the deadline as a real time

point will make the following treatments too complicated. The “closest”

deadline is actually mean the time interval between the deadline and current

time is the shortest. Therefore using a time interval instead of deadline will

significantly reduce the complexity. Imitating the processing time, the time

period can be represented by an integer whose value is t=deadline-current

step. Currently the most complex problem is how to know the deadline in

advance. The deadline has no relation with both arrival and service process,

so a special distribution function is necessary for generating the random

values of deadline. Similar with the ones of the arrival and service, the kind of

deadline distribution is specified by users through user interface. Properly

control the values of deadlines in a small group is the essential work for

avoiding the state space explosion which is the hidden danger of Proxel-based

method.

3.2 Adding Jobs Attributes

24

Totally, the tasks for adding deadline to the jobs are adding a special

distribution function for deadline, generating random deadline values for each

job when it arrives, and reordering the queue to make sure the job with the

closest deadline is served first. In addition, an interface for user to choose

deadline distribution is required. The advantage of adding deadline is that the

system can ensure that all the jobs are completed on time. The specific

description of the adding process is in the next part (Section 3.2).

3.2 Adding Jobs’ Attributes

After the attributes selection and their additional details determination, the

plan of how to adding these attributes is described. In this section, the process

of implementation for adding the attributes into the existing simulator is

described particularly.

3.2.1 Preparation of Adding Attributes

Finding a suitable data structure for storing jobs attributes is the main task in

the preparation before all the operations. The data structure of array is an easy

and common choice for attributes storage. As experiments, three different data

structures based on array have been tried.

1) Three Arrays Three Attributes

As the subtitle described above, for each kind of attribute build one

independent array for storage. So there will be three arrays defined as priority

array, processing time array and deadline array. In the arrival process, a new

job is attached all the three attributes. The attributes will be input into three

particular arrays according to their categories. Since each job has three

attributes, all the arrays are inserted into each Proxel to represent the jobs

queue. If the system is specified to simulate the jobs with priority, the array of

priority will be sorted as higher priority job first principle at each simulation

step. The other arrays keep the input and out attributes movements when jobs

3.2 Adding Jobs Attributes

25

arrive and leave, but they do not need to be ordered. The work in this thesis

currently only supports one attribute per simulation. That means at each

implementation three arrays are waiting to be chosen, but at most one

attribute array will be used, even when the simulator process no attribute jobs,

the three arrays will lie idle. Actually at least 2/3 storages are wasted during

each simulation and the simulator must spend time on input and out the

attributes to the arrays which are set aside. The most unsatisfactory point is

that three arrays per Proxel must need a large space when the jobs number is

big. Furthermore the discrete states will be increased along with the adding

attributes, and this must significantly extend the state space. Such a three

arrays data structure may cause the space explosion or the simulator extremely

slow speed problems. Three Array Three Attribute seems not a smart choice.

2) One Array Three Attributes

The first data structure actually makes three different formats copies for each

job so that the simulator can use one of them according to the user’s

requirement. For every job, each array does the input and output movements.

In another word, the same operation is implemented three times per job. To

save the time wasted in duplicated process, combining three arrays into one is

a solution.

On the basis of principle of single “Proxel”, each job with different attributes

can be represented by a unit. In order to keep the convenience for adding

other categories attributes in the future work, it is necessary to build a

structure for the job unit which contains the priority, processing time and

deadline currently. The total structure for the queue is still an array, but the

members in the array become the units of jobs. Certainly other data structure

can be tried, such as linked list. If other attributes are added, there may be

other better data structure. This is a subject of future research. In each Proxel,

an array of jobs unit is inserted. All the attributes management focuses on one

objective so that the duplicated movements in the first method can be omitted.

In a contrast, saving time is the advantage of this data structure. The jobs units

will be reordered as the selected queuing strategy at each arrival time step,

however still only one attribute is focused at each run. Another benefit of using

jobs unit is that it is convenient to check the situations of the other unselected

3.2 Adding Jobs Attributes

26

 , ,q, s , τq, τ s, p

attributes during the simulation. User may be interested in the other

information of the jobs, if so the first data structure is hard to provide a quick

solution, but the array of job units is able to track each job quickly. The

disadvantage of this data structure is the same as the first one, the storage

space problem. The size of Proxel definitely grows if three even more attributes

are inserted into as members.

3) One Array One Attribute

For general queuing system simulator, last data structure that represents each

job as a unit seems a proper one. But to the simulator which using a

Proxel-based method, storing all the information of the jobs in each Proxel is

not appropriate way. In order to saving storage space, besides controlling

Proxels number, the size of each Proxel should not be too big. For this reason

adding essential attributes which users need is more suitable than including all

the information of jobs.

 Attributes Proxel

 Array

Figure 3.2 the Attributes Storage with a Triple Switch

A triple switch is the key in this method. One empty array is built for the

attributes coming. The triple switch is used to control which category of the

attributes comes. The array with the selected attributes is added into each

Proxel as the new element. Figure 3.2 shows the structure expressively. In the

image the switch is turn to priority, the array in each Proxel will store priorities

and ordered as priority queue principle. This method significantly reduces the

storage space than the above two data structures and also saves the computing

Priority

Processing Time

Deadline

3.2 Adding Jobs Attributes

27

time. It is also the most convenient structure for increasing the categories of

attributes among three ways. Compare to the second structure, the only lack is

that it does not support the simulator to track the other attributes of the jobs.

But the situation of users have interested on the other information may not

happen frequently. Weigh up the advantages and disadvantages, this regret

can be accepted or put into the future improvements. Obviously, One Array

One attribute structure is the most suitable one for the current simulator, and

it is selected to be applied later in this thesis.

3.2.2 Adding Priorities

In the algorithm of existing Proxel-based queuing simulator, the Proxel is

structured as Px = (q, s , τq, τ s, p), the meaning of these symbols is described in

Section 2.3.1. The only element in a Proxel for representing the jobs in the

queue is the number of the jobs q, because each job is seen as a unit without

additional information. For this reason the servers only have two status “busy”

and “idle” which can represented by a Boolean variable. Adding priority to each

job signifies the current Proxel element q is not enough to depict the complete

substance of the jobs. It is necessary to add another element to each Proxel in

order to represent the priority of the jobs in the queue. The data structure of

array is an easy and common choice for storing priority. The storage design has

been described specifically in Section 3.2.1. An array with a triple switch for

choosing attributes is applied here. Priority will be added when the switch open

the access of the array for it. The servers’ state is also the part of discrete state

of a Proxel. As a result of attributes adding, the Boolean servers array is

changed to integer array corresponding to the attributes storage. The original

Proxel is upgraded to the following, where “jobs” is the array for the attribute

storage:

Px = (jobs, q, s , τq, τ s, p)

The priority should at least have two values for describing the different levels

of job’s importance. To show the least influence of the original system, each

job has a priority either “1” or “2” which “1” represents the higher priority, and

“0” means no job.

3.2 Adding Jobs Attributes

28

In the algorithm, at each time step, if the probability of arrival is more than 0,

an arrival Proxel is generated. Now the new job is possibly to have either

priority 1 or priority 2. According to the idea of Proxel-based method that

generates the Proxels of all the situations which possibly happen at the current

time step, the original arrival Proxel is split into two Proxels. One is for the

priority 1- job coming, and the other is for priority 2. The probability of each

such Proxel is set the half value of the arrival probability. Certainly the

probabilities can be set in other different way, such as one is 40% of the arrival

probability and the other is 60%, but the amount of the both probability must

equals to the arrival probably. The probabilities will be set in different ways in

the experiments of next chapter to observe the influence of the result.

With the restructured Proxel structures, the adapted algorithm works as

follows: At time step 0 of each simulation, the initial Proxel Px = (0, 0, 0 , 0, 0 ,

1.0) is created and for every simulation time step the following loop is

performed.

/* Algorithm 3.1: Adding Priority */

01 FOR every Proxel Px

02 p_arr = P (arrival);

03 FOR EACH occupied server s_i

04 p_serv_i = P (service i is finished)

05 ENDFOR

06 p_stay = 1 – (sum (p_serv_i) + p_arr)

07 normalize_probabilites ();

08 IF (p_arr > 0 && priority_set == true)

09 create_arrival_proxel_1 ();

10 create_arrival_proxel_2 ();

11 ENDIF

12 IF (p_arr > 0 && priority_set ==false) create_arrival_proxel ();

13 FOR EACH occupied server s_i

14 IF (p_serv_i > 0) create_service_finished_proxel ();

15 ENDFOR

3.2 Adding Jobs Attributes

29

16 IF (p_stay > 0) creat_stay_proxel();

17 ENDFOR

The first part (02 - 07) calculates the probabilities of possible state changes. The

detail description of can be found in page 5 of [2]. The second part (08 - 16)

generates the Proxels for next simulate time step of the system. The part (08 -

11) is the operation of generating arrival Proxels with attributed jobs when the

switch of priority is on.

In each arrival Proxel, when a new job with a priority comes, the queue is

reordered immediately. Contrast the steadiness and algorithm complexity of

several sorting methods. The commonly used insert sorting whose time

complexity is O(n2) and space complexity is O(1) is applied as the method of

reordering the queue. So that the new job can be inserted into the array of the

queue according to its priority directly, the jobs after it will backward for one

position. After sorting the queue, if there is any free server, then get the job

which is at the head of the array immediately. The current server is occupied

and set the same priority with the processed job, meanwhile this job is

removed from the queue, the jobs behind are forward by one position. The

service finished and stay Proxels keep the same operation as before, but what

needs to mention is that the servers status should be updated to integer ones.

 Arrival Proxel for a P1 job

 Arrival Proxel for a P2 job

 Service Proxel

 Stay Proxel

Figure 3.3 a Branch of the Proxel Tree for Modeling the Queuing System with

Priority Jobs

[1,1,2,2,2], 5, [2], 8dt, 1dt, *

[1,1,1,2,2,2], 6, [2], 9dt, 2dt, *

[1,1,2,2,2,2], 6, [2], 9dt,2dt, *

[1,2,2,2], 4, [1], 9dt, 0, *

[1,1,2,2,2], 5, [2], 9dt, 2dt, *

3.2 Adding Jobs Attributes

30

In Figure 3.3, it depicts a branch of the Proxel tree which simulates the queuing

system with the priority-jobs from the 8th to 9th time step. The left rectangle is

one of the Proxels at 8th time step. It contains an array with priorities [1, 1, 2, 2,

2], the number of jobs in the queue 5, the server which is occupied by a priority

2 job, the age of simulation 8dt, the age of service 1dt, and the probability

which is omitted as a star. The probabilities of arrival, service, stay are all more

than zero. At the 9th time step, the most above Proxel represents the job of

priority 1 arrives, the new job is inserted into the third position of the array.

The simulation age and the service age are added by one time step. The second

above Proxel is the priority 2 job arrival Proxel. The Proxel below it is the

service finished Proxel and the lowest Proxel is the stay Proxel.

Since the jobs are only attached priorities without effect on other variables in

the model, the performance measures of the whole system will not change

much. In order to observing the individual performance measures for each

priority class, the analysis results for priority 1 and priority 2 jobs are calculated

separately. The performance measures calculation formulas are adapted as

following. The simulation time step is denoted as dt, i the priority class, m the

total number of servers in the system, mi the number of servers occupied by

priority i jobs, k the current time step, tmax the maximum simulation time and

kmax = tmax / dt the maximum number of simulation time steps, s state.

Transient server utilization:

ρi [k] = ∑ mi/m * P(s) [k]

Transient throughput of the system:

λi [k] = throughputi [k]/dt

Transient queue length:

Qi [k] = ∑ queued_jobsi (si) * P(s) [k]

Average job waiting time:

𝑊 i = ∑ Qi [k] * dt / λi

Transient number of jobs in the system:

3.2 Adding Jobs Attributes

31

Ki [k] = ∑(si + queued_jobsi (si)) * P(s) [k]

The average values are calculated similar as the performance values calculation

of the whole system. Although these separate analysis results are not shown in

the user interface, they are recorded in additional files and drawn out

afterwards as an observation compare to the total performance measures.

3.2.3 Adding Processing Time

The information contained by processing time is a measure of jobs’ length.

When the data structure switch for the processing time is turned on, the array

for storing processing time is inserted into each Proxel as an element. Since the

data type of processing time is also integer, the array is the same with the one

which stores the priorities. In order to ensure the shortest job be served first,

after each job arrives, the array will be reordered using insert sorting. The value

of processing time is lower; the job is at the more front position in the array.

There is a different point between adding priority and processing time. The

priority values are determined before each simulation, but the values of

processing time are unknown in advance. How to generate a processing time

for a new coming job? The key of solving this problem is requiring a priori

knowledge of processing time. Reviewing the description of shortest job first

queuing strategy, the processing time of each job is actually the prediction of

how long the job to be served. In another word, the processing time is related

to the service process and the value depends on the service distribution

function. When a new job arrives, all possible values of its processing time must

be generated according to the service distribution which is selected by user

through the simulator interface. This means in a specific service distribution

function, the processing time values whose probability is more than 0 must be

chosen. Supposing y = F(x) is the service distribution function, x is simulation

time, y is the probabilities, the values of x that makes F(x) > 0 is the possible

processing time. In the existing simulator, the functions of service process have

included most commonly used probability distributions. Three types of these

distributions are easier for processing time generation: Deterministic, Uniform

and Triangular. The reason is that the value of Deterministic distribution is

3.2 Adding Jobs Attributes

32

definite, and the x values are limited in a finite interval of Uniform and

Triangular distribution. But the other four distributions (Exponential, Normal,

Lognormal, and Weibull) don’t have a limitation of x values. This is not only

difficult to calculate the processing time but also may cause the potential

danger of Proxel-based method: the state space explosion. If there are a large

number of possible values for the processing time, each arrival event will be

divided into a large number of Proxels at the time step which the arrival

probability is more than 0. The state space must explode after several

simulation steps. Therefore it is necessary to find a proper way for controlling

the processing time’s value set.

In the original algorithm of Proxel-based queuing system simulation, the

applied distribution function is instantaneous rate function (IRF) which is

computed from cumulative distribution function (CDF) and probability density

function (PDF) (see detail in [12] Section 3.2). Although IRF can provide

absolute probability values, for processing time generation, the CDF is

sufficient because the focused values are integer service time steps but not the

double probabilities value. In Figure 3.4, they are the line images of the four

CDF which have infinite support of x-values. The y-coordinate represent

probability, x-coordinate is simulation time step. The maximum y value is 1.0.

The common ground of these four images is that the probability value tends to

1.0 in the pace of x value increasing. Begin from a certain x value; the

probabilities are almost equal to 1.0. The state space explosion problem can be

solved by define the “certain” x value a cutoff point to limit the processing time

in a small set. This value is the maximum processing time, and is represented

by pt_max in the following. To dumping the surplus x values whose

probabilities are almost 1.0, the probability boundary can be set as 0.99. Then

the x value which corresponding the probability 0.99 is chosen as the cutoff

pt_max. All the possible values for jobs’ processing time are 1/dt, 2/dt, …,

pt_max/dt. When an arrival event of a new job happens, n= pt_max Proxels are

created, and each Proxel according to one processing time value. For

Deterministic, Uniform and Triangular distributions, the finite interval of x

values divided by dt are the possible processing times. A proper way of

processing time calculation is found, the type of distribution and the

parameters of the function are determined by user. Actually the processing

time’s values are decided by the user’s choice. But if user gives a large range or

3.2 Adding Jobs Attributes

33

an unsuitable parameter to the service distribution function, it may also a state

space explosion. This is the disadvantage of adding processing time and it

restricts user’s convenience of selection.

Figure3.4 left to right: CDF Images of Exponential, Normal, Lognormal, and

Weibull Distributions

(Images from http://en.wikipedia.org/wiki/Probability_distribution)

After processing time generation, there is a little adaption for service finish

probability calculation. In the original simulator, the service finish probability is

the generated according to the service process distribution. Now the service

time of each job is calculated out in advance, so the service finish probabilities

are deterministic values. In service event Proxel, count down the processing

time of the job which is in a service at each step. If the processing time is more

than 0, it means that there is no possibilities for service finish happening. When

the processing time is counted to 0 at certain time step, then the possibility of

service finish is 1.0. The service process is much concise after adding processing

time to the jobs in the queue.

The adapted algorithm is as following:

/* Algorithm 3.2: Adding Processing Time */

01 FOR every Proxel Px

02 p_arr = P (arrival);

03 FOR EACH occupied server s_i

04 IF (pro_t > 0) p_serv_i = 0; (service i is finished)

05 IF (pro_t == 0) p_serv_i = 1;

06 ENDFOR

07 p_stay = 1 – (sum (p_serv_i) + p_arr)

3.2 Adding Jobs Attributes

34

08 normalize_probabilites ();

09 IF (p_arr > 0 && pro_t_set == true)

10 create_arrival_proxel_1 ();

 …

n create_arrival_proxel_pt_max ();

n+1 ENDIF

n+2 IF (p_arr > 0 && pro_t_set ==false) create_arrival_proxel ();

n+3 FOR EACH occupied server s_i

n+4 IF (p_serv_i =1) create_service_finished_proxel (); // count

down the processing time in

this proxel

n+5 ENDFOR

n+6 IF (p_stay > 0) creat_stay_proxel();

n+7 ENDFOR

Follow the above process and the depicted algorithm, the processing time can

be successfully added into each job in the queue. The deadline, as the third

attribute is described next.

3.2.4 Adding Deadline

When the triple switch is turned on to add deadline, each coming job is

attached a deadline attribute, actually a time period for the job staying in the

queuing system. The job with closer deadline is placed in a more front position

of the queue. Since the deadline is converted into time period in our plan, the

approach of adding it has similar way as adding processing time. Both of

processing time and deadline focus on an interval of “time steps”, so their data

types are all integers. And the storages data structure are integer arrays which

is selected by the triple switch.

Deadline is the time limitation for a job staying in the system, and it is given by

users without the relation to arrival and service rates. Therefore the deadline

generation isn’t according to any element of the whole system. The solution of

inputting the deadline value to each job can imitate the arrival and service

3.2 Adding Jobs Attributes

35

process, generating random numbers by a separate distribution which can be

added especially for deadline. The distribution function and the parameters are

specified by users, and then all possible values for deadline can be calculated

out. If a separate distribution part is available with generating the ending

points, then a particular distribution part is also able to directly compute the

time steps interval of each job staying in the system. From the above analysis,

the deadline generation is much similar as the processing time one. The

distinction is that the deadline distribution part is not relative to the arrival and

service processes.

After building a separate channel for deadline, the following steps can imitate

the adding processing time process. In order to prevent the overflow of state

space in Proxel-based simulator, controlling the size of the deadline’s value set

is an essential operation. The same solution in the process of adding processing

time can be used here. Collect the values whose probabilities are more than 0

and less than 0.99 for Exponential, Normal, Lognormal, Weibull distributions

and divided by single time step dt. And when users select Deterministic,

Uniform and Triangular distributions, just use the x-interval’s boundary values

divided by dt to calculate the upper and lower values for the deadline values

group. Contrast to the first method, the third one is much more feasible to

implement and the deadline generation is in a separate channel without

complex connection. Furthermore the third method costs less computing

time than the second one. All in all, in these enumerated ways it is the most

suitable one for adding deadline to the jobs in the queue.

The subsequence steps are on the basis of original Proxel-based queuing

simulation. When the arrival probability is more than 0, for each deadline value

generate one Proxel at next time step. But the sum of all success arrival Proxels’

probabilities must be ensured equal to the current arrival probability. After

each job arrives, reorder the queue to let the jobs whose deadline is closer

stand more forward in the queue. The service and stay Proxels keep the same

as in the original algorithm. The performance measures of each deadline level

should be calculated separated from the total ones. It is better to merge about

5 time steps into a group since in this way the result is enough to observe the

influence after adding deadline in different experiments and can save the result

storage and calculation time. Similarly the adding deadline keeps the danger of

3.3 User Interface

36

state space explosion if inappropriate parameters of the distribution function

are set by users. The range of the parameters of each distribution can be found

through experiments.

Until now, the implementations for adding three kinds of attributes are

described completely. The priority seems the easiest attribute to add since it

has not any relation with the simulation process. Although the other two

attributes is more complex than priority, following the above adding process

statements, they can also be added successfully. Certainly, the user interface

needs some adjustment which is stated next.

3.3 User Interface

Besides the algorithm, the user interface is the other essential aspect which

needs some corresponding alterations. After the alteration, the user interface

is able to support users to conveniently choose the jobs with or without

attributes and select the type of attribute as their demand. This concept of this

section is the statement of user interface adjustment.

3.3.1 Preprocess of User Interface Adjustment

The original user interface has been shown in the example of Section 2.3.2. It

contains three main parts, the option part for users to specify the queuing

system and result part for reading transient and steady performance measures

are in the main window, the image for plotting the transient results is

represented in a separate window.

The implantation of adding attributes to jobs in the queue actually is adding an

attachment to each job but not modify the structure of the whole queuing

system model. Therefore the user interface does not need to be restructured. A

small piece of place especially for attributes selection is enough. Adding

attributes is a long-term work, and the current work in this thesis is just a start

and an identification of adding attributes to the queuing system. In the future

3.3 User Interface

37

work, the field about attributes must be improved and the types of attributes

might be increased. For this reason, designing a separate window for choosing

attributes is convenient for the future work and easy to adjust. Observing the

original main window, since it contains both options part and results part, the

main window already contains many elements. If directly add new elements of

attributes to the main window, it will either become too crowded or the size

will be enlarged too big. Therefore building a new window especially for

specifying the job’s attribute is an indispensable operation. However there

must be a small element connecting the main window and the attributes

window.

The elements of attributes window should be according to the types and

implementations of attributes. Additionally the design for attributes window

also should consider the options and convenience for users. On the basis of

implementations of adding attributes which are discussed in Section 3.2, the

manipulations that belong to users include adding attributes to jobs in the

queue or not, selection one of the three attributes to add, furthermore if the

deadline is chosen, the distribution function and parameters for deadline also

should be specified by users. The adjustments to the original user interface and

how the new elements work are shown in next section.

3.3.2 The User Interface Adjustments

Standing in the perspective of users, during the specifying the options of

queuing system, the first step about attributes implementations is deciding

whether adding attributes to jobs or not. So an element for this function should

be added firstly.

The part which is marked by a red rectangular in Figure 3.5 is the new elements

for users to decide the jobs with or without attributes in the specification

queuing system step before executing each simulation. In the initial state, the

check button in the left is empty and the button in the right side is unavailable.

Users are able to select adding attributes to jobs by marking a hook into the

check element so that the right hand “job attributes” button becomes available

to click. The attributes window that shown in Figure 3.6 will jump out if the

3.3 User Interface

38

button on the right side is clicked. The button is actually the connection

between main window and attributes window.

Figure 3.5 User Interface 1- New Elements in Main Window

Figure 3.6 Attributes Window and Distribution Window for Deadline

3.3 User Interface

39

The attributes window contains three elements to present the three attributes

for users to choose: priority, processing time and deadline, which is shown in

Figure 3.6. The priority one and processing time one are the same. Since the

deadline contains a separate distribution, it is different from the other two.

When users choose the jobs with deadline, the “General Distribution” button

becomes available to be clicked so that the distribution window appears. After

specification of the distribution and its parameters and confirming the settle by

clicking “Set Distribution” button, the details of deadline distribution will be

shown at the attributes window. The “Set Attributes” button is used for

confirming the attribute selection at the final step of attributes arrangement.

This paragraph of implementations instruction is according to steps which

following the arrows in Figure 3.6. When the preparation of adding attributes is

ready and other parameters of the queuing system are specified, the simulator

can run for analyzing a queuing system with attributed jobs based on Proxel

method.

So far, all alterations of the original algorithm and the user interface for adding

attributes are depicted completely. Next chapter will prove the feasibility of the

methods and the influence of adding attributes by making several different

experiments.

40

Chapter 4

Experimental Verifications

In this chapter the experimentation results of adding attributes

implementations are presented. A series of experiments are concentrated on

adding priority to jobs in the queue, with the process of yielding analytical

expressions for the performance measures and demonstrating the abilities of

the tool. According to their focalizations, the experiments are classified as

validation experiments and benchmark experiments. The satisfaction and

dissatisfaction of adding job’s attributes to Proxel-based queuing system are

reflected by the results comparison and discussions.

 The experiments are carried out with the following setup:

·CPU Intel (R) Pentium (R) M Processor with 2.00 GHZ

·1.0 G RAM

·Microsoft (R) Windows (R) XP operation system

The development tools are listed as following:

·Dev C++ -Version 4.9.9.2 (Development Environment)

·Glade -Version 2.12.1 (Interface Tool)

·Microsoft Office Excel 2007 (Result Visualization)

4.1 Experiments Plan

41

4.1 Experiments Plan

Every theory is tested and verified by many different designed experiments

before it is published. Especially in a simulation project, it is very easy to make

errors of performance measures accuracy, assumptions for simulation and

programming aspect. Since the existing Proxel-based queuing system simulator

has been tested and its steady work ability has been verified, our work can be

tested through directly comparing with original tool. It omits the process of

verifying the validation of the conceptual queuing system by contrasting with

real systems.

According to the goals of this thesis which are announced in Section 1.3, the

experiments with different expectations are planed as following.

·Validation Experiment: Present the simulator is able to successfully provide a

solution for the queuing system with attributed jobs.

·Benchmark Experiment 1: Variate the number of priority levels and observe

the effect on the performance measures. Try to find a range of priority levels

in which the simulator performs excellently.

· Benchmark Experiment 2: Variate the proportion of each priority’s

probability, present the results’ variation and show the influence in different

situations.

Because of the time limit of the thesis is close, it is very regretful that there is

no enough time for the processing time and deadline experiments. But the

methods of adding processing time and deadline have been described in detail,

so the algorithms can be achieved definitely. Furthermore, since processing

time, deadline and priority are parallel attributes of jobs in the queue; their

implementations are similar with each other. The experiments of adding

processing time and deadline also can be structured as priority ones

4.2 Validation Experiment: 2 Priority Levels

42

4.2 Validation Experiment: 2 Priority Levels

The expectation of this validation experiment is to prove priority can be

successfully added into the jobs of the queue as one kind of attribute. The

objective queuing system is the basic one M/M/1 which has a Markovian arrival

and service process and a single server. The parameters of this queuing

system are set as the list in Table 4.1. Exp is the abbreviation of Exponential

distribution, the number inside the parentheses is the rate of the distribution

function. This simulation will end until the maximum simulation time step

200=20/dt achieve.

Arrival process distribution Exp (1.0)
Service process distribution Exp (2.0)

Number of servers 1
Simulation step size (dt) 0.1

Maximum simulation time 20

Table 4.1 System Specification of Experiment 1

Figure 4.1 presents the both average and steady state performance measures

results of two times simulation. The left image is the results of the jobs with no

attributes and the right one is after adding 2 levels priority to the jobs.

Observing from the images, the values of the both images are exactly the same.

This is because what we altered is only the information inside each job unit but

not the structure of the whole queuing system and the simulation way. The

validation of non-attributed situation’s results has been tested in the

experiments part of paper [2]. Therefore performance measures of total jobs

keep the same as before proves that after adding priority the simulator is able

to provide correct analysis description for the queuing system. Adding priority

causes no effect on the deterministic and accuracy of results.

4.2 Validation Experiment: 2 Priority Levels

43

Figure 4.1 Performance Measures of Experiment 1

Table 4.2 compares several statistics of before and after adding priority to the

jobs. The total number of processed Proxels is significantly grows after adding

priority. When jobs have no attributes, there is one job category. So only one

arrival Proxel is created for the new job arrival event. The added priority

classified the jobs into two categories: higher priority jobs and lower priority

jobs. As a result, each arrival Proxel must split into two ones. The state space

extends, correspondingly the total number of processed Proxels increases. The

work load is forced to rise; therefore it costs more calculation time.

Statistics no attributes 2 levels priority

Total number of Proxels processed 5163 72498

Max number of concurrent Proxels 49 561

Accumulated error 1.596e-010 4.742e-009

Computational time 0.031s 0.797s

Table 4.2 Statistics Comparison

Now, let’s observe the especial results for different priority jobs which are

shown in Figure 4.2. In order to describe conveniently, the jobs with higher

priority are called P1-jobs, similarly P2-jobs represent lower priority jobs. The

4.2 Validation Experiment: 2 Priority Levels

44

values of each performance measures are presented by line graphs, with

horizontal simulation time step coordinate and vertical probability coordinate.

Figure 4.2 Performance Measures for Different Priority Jobs

Transient Throughput: Throughput is counted at the service finish moment,

the sum of P1-jobs and P2-jobs equals to the total.

Transient Server Utilization: According to the throughput formula (detail can

be found in paper [2]), the value is related to current busy servers’ number and

the probability value. Since this system has single server and both P1-jobs

4.3 Benchmark Experiment 1: n Priority Levels

45

P2-jobs share the arrival probability by 5:5, the transient values of server

utilization are almost equal. The sum utilization of both two kinds of jobs

equals to the total ones.

Transient Queue Length: Queue length is decided by the number of jobs in the

queue. P1 jobs are always served before P2 jobs, so at every moment the P1

has fewer jobs than P2 in the queue.

Transient Jobs in System: This value is calculated as the sum of jobs in servers

and the queue and in this experiment there is single server. P1 jobs are always

finished first and leave the system. Obviously P1 has less value than P2.

Transient Waiting Time: Because P1 jobs are processed before P2 jobs, the

waiting time of P1 is certainly less than P2. But the sum of the P1 and P2’s

waiting time still equals to total waiting time because of the time saved in P1

jobs is added into P2 jobs.

4.3 Benchmark Experiment 1: n Priority Levels

In this section we change the total levels of job’s priority for observing the

influence to the system performance. The system specification is as Table 4.3

describes. This is M/M/2 queuing system which is similar as Experiment 1 but

with two servers. The level of priority is varied to 3,4,5,6,7,8,9 for test, and the

results of performance measures are all the same which is represented in

Figure 4.3. The correctness of analyzing the queuing system has not been

influenced when the levels of priority increased. The Proxel-based queuing

system simulator keeps its simulation ability as before.

Arrival process distribution Exp(1.0)
Service process distribution Exp(2.0)

Number of servers 2
Simulation step size (dt) 0.1

Maximum simulation time 20

Table 4.3 System Specification of Benchmark Experiment 1

4.3 Benchmark Experiment 1: n Priority Levels

46

Figure 4.3 Performance Measures of Benchmark Experiment 1

Along with the levels of priority increase, the Proxel state space gets extension.

The maximum Concurrent Proxels and calculation time are all increased.

Although the accumulated error is added, it is still limited in an acceptable

range. The most acute alteration is happened on the size of state space. Table

4.4 presents the extent caused by the change of priority levels. Figure 4.4

reveals a potential danger of state space explosion: when the level of priority is

a large number or the simulation time is long, the system might go on strike

because of the state storage problem. Therefore in a normal situation, it is

better to set the job’s priority in 10 levels. When the priority level is set to be

more than 5, the simulation time around 20 is enough and good for this

simulator to get into steady state.

Priority
levels

Total number
of Proxels

Maximum number
of concurrent

Proxels

Accumulated
error

Computational
Time

0 3915 32 2.283e-010 0.093s
2 73490 566 1.455e-008 0.656s
3 555419 4212 1.968e-007 5.156s
4 2413161 18153 1.367e-006 27.456s
5 7413928 54991 5.760e-006 95.437s
6 17836703 140755 1.806e-005 369.921s
7 39872912 381820 4.891e-005 846.711s
8 63783057 518677 9.283e-005 1553.828s
9 102721292 824124 1.687e-004 3097.547s

Table 4.4 Statistics Comparison with Different Priority Levels

4.4 Benchmark Experiment 2: Variation of Probability Proportion

47

Figure 4.4 Comparison of Proxel Number

4.4 Benchmark Experiment 2: Variation of the

Probability Proportion

Here the probabilities proportion of different priority Proxel in 2 levels priority

queuing system is focused. In the validation experiment of Section 4.2, each

arrival Proxel with a priority has the half value of an arrival event probability. In

this section, the proportion of probability will be changed and show the

influence on the queuing performance. The series experiments are

implemented with the same queuing system G/M/c, which does not have an

analytical solution in queuing theory. The parameters are listed in Table 4.5.

The probability proportion between P1 jobs and P2 jobs is varied from 1:9 to

9:1 and ensure the sum of the probability is 1.0. The results of performance

measures are shown in Figure 4.5. Because after this series experiments, both

the average and steady performance measures for total jobs are keep the same.

Therefore the probability proportion also has no effect on the whole system

4.4 Benchmark Experiment 2: Variation of Probability Proportion

48

performance. The little variation of statistics which is shown in Table 4.6 is

caused by the computational differences which are probably more cut off

proxels, due to smaller probability values.

Arrival process distribution Norm(1.2;0.1)
Service process distribution Exp (0.5)

Number of servers 2
Simulation step size (dt) 0.1

Maximum simulation time 20

Table 4.5 System Specification of Benchmark Experiment 2

Figure 4.5 Performance Measures of Benchmark Experiment 2

Priority

levels

Total

number of

Proxels

Maximum number

of concurrent

Proxels

Accumulated

error

Computational

Time

1:9 373388 4897 4.286e-008 2.031s

2:8 422736 5665 4.246e-008 2.453s

3:7 448692 6530 4.328e-008 2.719s

4:6 463006 6759 4.231e-008 2.843s

5:5 468955 6719 4.138e-008 2.891s

6:4 467244 6648 4.175e-008 2.907s

7:3 457149 6907 4.293e-008 2.734s

8:2 435303 6223 4.365e-008 2.563s

9:1 389154 5269 4.449e-008 2.140s

Table 4.6 Statistics Comparison

4.4 Benchmark Experiment 2: Variation of Probability Proportion

49

Due to the non-Markovian arrival distribution, the results are not smooth. But

the expected transient values can be captured by Proxel-based method. Two

probability proportions are chosen as samples to observe the particular

performance measures of P1 and P2 jobs. Every performance measures

contrast between 3:7 and 7:3 probability proportions is compared in the

following line graphs.

Figure 4.6 Transient Utilization (Left 3:7, Right 7:3)

Transient Server Utilization: Since the server utilization is computed as the

busy servers multiply the probability of current simulation time step, when the

probabilities of P1 and P2 jobs exchanged, the utilization value is exchanged

correspondingly.

Figure 4.7 Transient Throughput (Left 3:7, Right 7:3)

4.4 Benchmark Experiment 2: Variation of Probability Proportion

50

Transient Throughput: The total throughput has no change however the

proportion changes. But the particular throughput for P1 and P2 exchanged

their values because it is only calculated at the service finished time point.

Figure 4.8 Transient Queue Length (Left 3:7, Right 7:3)

Transient Queue Length: When the proportion is 3:7, there is less probability

for P1 jobs arrival. Moreover the P1 jobs are served before P2 jobs. Therefore

the distance of queue lengths between P1 and P2 is much bigger than in the 7:3

situation.

Figure 4.9 Transient Jobs in System (Left 3:7, Right 7:3)

4.5 Discussion of the Results

51

Transient Jobs in System: When P1 has less arrival probability, fewer jobs

arrival in the system. As a contrast, P1 occupies larger arrival probability and

more jobs are contained in system.

Figure 4.10 Transient Waiting Time (Left 3:7, Right 7:3)

Transient Waiting Time: In the 3:7 situation, less P1 jobs come and they are

served more quickly than P2 jobs. P1 jobs cost much less time than P2 jobs. In

the 7:3 situation, more P1 jobs come so they wait for longer time. Since P1 jobs

cost more time, P2 jobs must wait for P1 to be finished, correspondingly they

wait longer than before.

4.5 Discussion of the Results

Three kinds of experiments are carried out for their particular expectations. In

validation experiment, the least priority levels are added in the most basic

queuing system. The total results equal to the no attributes situation presents

that the simulator is able to handle attributed jobs.

In benchmark experiment 1, the priority levels are varied from 2 to 9. Although

the results keep the same, the statistics not regarding priority correspondingly

4.5 Discussion of the Results

52

varied. The total processed Proxels number and the computational time

increase significantly. When the priority level is more than 5, the Proxels

number is huge and the computational time should be counted by minute but

not second. When 9 levels priority are added, the system cost almost one hour

in computation. As a suggestion for the simulator steady implementation, the

priority level is better to be set below 10. Simulation time 20 is enough for the

simulator to get a steady state and avoids the simulator to be immersed in a

mass calculation when there are more than 5 priority levels.

When the priority level is determined, the probability proportion of each

priority classification has no influence with the total performance measures.

But the particular results of each priority classification changes according to the

probability proportion.

The above results of experiments are valid for this implemented Proxel-based

queuing system simulator, but not in general.

53

Chapter 5

Conclusions and Future Work

The summary of the entire thesis with contribution of the described work is

stated in this chapter. This part is followed by the conclusions of the thesis,

restrictions and subjects of future research in this direction.

5.1 Summary

Adding attributes is an essential extension part of Proxel-based queuing system

simulator because it is the prerequisite of increasing number of queuing

strategies that enable handled. Each Proxel presents the state of current time

step and also carries adequate information of predicting the state of next time

step. Including attributes information into Proxels in the main implementation

of this thesis. Priority, processing time and deadline are the attributes what we

intend to insert.

An array with a triple switch is the recommended data structure for storing job

attributes. Adding attributes will extend both the size of each Proxel and

number of Proxels. Choosing a suitable storage is one of the ways to handle

state space explosion efficiently. After testing three different data structures,

an array with a triple switch is the most suitable one because it is faster,

smaller space occupation and usage flexibility for choosing attributes in

5.1 Summary

54

Proxel-based simulation. Therefore this data structure is selected to contribute

its advantages to the attributes storage, insertion and deletion in our

implementations.

Priority is one kind of jobs attributes and the value has no relation to the arrival

and service process. Since the levels of priority are determined beforehand, the

priority is the easiest one to be implemented among the three attributes. In

each Proxel, jobs with different priorities are ordered in the array to make sure

the job stand more forward whose priority is higher. Because the categories of

jobs are increased according to their priority level, correspondingly for every

job arrival event, Proxels are classified as the priority levels to simulate

different priority jobs coming. Free servers get new job from the head of the

array since the array is already sorted in an order. In every simulation time step,

the Proxels for all possible states are generated until the maximum simulation

time is achieved. Finally the simulator provides both transient and steady

results of the system performance measures. Following this process the

Proxel-based simulator completes a simulation of a Priority Queue and

provides an analysis description for it.

The ways of adding processing time and deadline are also described in detail.

Since they are similar with priority, the main implementations are similar with

priority’s. The distinguish is the calculation way of processing time and deadline

values. Processing time is related to the service rate, so for each service

distribution there is a particular value set for processing time. Deadline has a

separate distribution for the value generation, and the calculation way is the

same as processing time. But both of these two attributes have the danger of

Proxel state space explosion which might be caused by the big value set. As a

result of the feature of Proxel-based method, each value there should be one

kind of Proxel. This problem can be solved by setting a cutoff point for each

distribution, therefore the value sets of processing time and deadline are

controlled suitable for this Proxel-based simulator. Finally the Shortest Job First

and Deadline Scheduling are possibly added into the queuing strategies of the

system successfully.

5.2 Conclusions

55

The validation of adding attributes is proved by the experiment of an M/M/1

queuing system with 2 priority level. Furthermore Benchmark Experiment 1

shows the statistics variation along with the priority level increase. The

significant increase of total processed Proxel number reveals that the level of

priority is better to be set below 10, otherwise the system may cost a long time

at the computation or might cause a state space explosion. Benchmark

Experiment 2 varies the probability proportion of 2 priority level jobs, the

results of performance keeps the same presents that the proportion has no

influence with the total result generation. The only change is the particular

performance measures of jobs with each priority. The statistics change a little

because of the computational difference.

The work of adding attributes to the Proxel-based queuing system simulator is

organized as the data structure selection, algorithm description and speculated

experiments. The complete substances of this thesis are depicted above as a

summary.

5.2 Conclusions

5.2.1 Contributions

Jobs attributes can be successfully added into Proxel-based queuing simulation

system. A refined approach of adding attributes and a flexible data structure

for attributes storage have been developed. The selected attributes storage

costs less time on the data implementations and smaller space for storing

attributes than the other two data structures in such a Proxel-based queuing

system, and it is also convenient for adding more attributes in the future

research. The way of using integer data to represent priority, processing time

and deadline makes the simulate operations and values calculation much more

5.2 Conclusions

56

concise. The probability of dangerous state space explosion is reduced by

applying a cutoff point as the threshold in processing time and deadline values

generation approach. A separate window is designed for jobs attributes

specification. It is not only easy to implement but also flexible for alteration if

more attributes are added in the future.

Compare to the results of simulation non-attributed jobs queuing system, the

total number of processed Proxels and the computational time are significantly

increased because of an extension of state space. But these shortcomings have

been controlled in an acceptable extent by our designed ways of adding

attributes. Through a series of experiments, the simulator is proved that it is

able to provide analysis description to attributed jobs queuing system with

Proxel-based method. Furthermore the values of performance measures in

both transient and steady status still keep the deterministic and accuracy level

as the original simulator. Generation of deterministic results with a higher

accuracy is the major advantage of Proxel-based method compared to other

methods; therefore this feature is maintained after adding attributes is the

most powerful certification of the work’s feasibility. The special performance

measures for each job category with certain attribute present that the adapted

Proxel-based tool simulates the queuing system with the desired queuing

disciplines well. All in all, the approach of adding attributes described in this

thesis is a suitable extension to the original Proxel-based queuing system

simulator.

5.2.2 Restrictions

Now, the Proxel-based queuing system simulator is able to handle attributed

jobs successfully and the influences after adding attributes are presented by

several planned experiments. Currently all the phenomenon reveals that

adding attributes is suitable improvement for the original simulator. But there

are still some unsatisfied restrictions of adding attributes to jobs in the queue.

• Restriction from state space problem

5.3 Outlook

57

The method of adding attributes which are depicted in this thesis can be

implemented successfully, but the storage problem still can’t be absolutely

solved since it is the bottleneck of the Proxel-based method. To prevent the

state space explosion, the levels of attribute can’t be a huge number and this

can be controlled by the developer of the tool. But there is some risk which

depends on user’s choice on the service and deadline distribution and

parameters specification, for example if the interval between upper value and

lower value of the Uniform distribution is too big; the system will face the

danger of state space explosion. Since these restrictions are caused by the

features of Proxel-based method, there is no absolute solution but the

potential danger can be reduced by improvements in the future.

• Restriction from objective environment

The extension of state space must increase the work load of computer, so the

computational time will definitely become longer. However, the cost time can

also be reduced more or less by data structure improvement and computer

setup advances. The experiments of processing time and deadline are the main

regret; they are putting into the subjects of future work.

5.3 Outlook

This thesis can be seen as the beginning work in the queuing strategies

development direction with the Proxel-based queuing system simulation. The

current simulator still can’t support all kinds of queuing systems and the

implementations of adding attributes have lots of work which can be improved.

•More queuing strategies:

5.3 Outlook

58

Currently only three attributes are considered to be added into the jobs in the

queue so that the queuing system might be able to solve the queuing strategies

according to the attributes. But in queuing theory, there are still more queuing

disciplines have not been implemented corresponding to more different

attributes. Therefore adding more attributes in parallel to the jobs is the

essential subject on the way of extending the queuing system’s range.

• Improvement of current work:

The processes of adding processing time and deadline are described to every

detail; however the experiments verification of them should be put at the first

position in the improvements. Without experiments, the unpredictable

problems will not appear automatically. Additionally the attributes storage has

the space for improvement, other data structures can be attempted in the

future, such as an array with a hashing technology. A more suitable storage can

handle the state space problem better and saving total processing time. The

method of storing and calculating performance measures can also be improved

in the future.

Using Proxel-based method in queuing system simulation is a new approach for

both application of Proxel-based simulation method and queuing system

performance analysis. Adding attributes significantly developed the basic

simulator so that the tool supports more queuing systems simulation. Even

though our work proves the feasibility and advantages of adding attributes, the

implementations have limitations and potential risks. The direction of extend

more queuing strategies need further studies and research work based on

many experiments. Along with the development and improvement of the tool,

the Proxel-based queuing simulator might occupy a more and more important

role in the fields of analyzing queuing systems.

59

Reference

[1] Bergin Joseph. Data Structure Programming: with the standard template in

C++. Springer, New York, 1998.

[2] Claudia Krull, Graham Horton. Application of Proxels to Queuing Simulation

 Otto-von-Guericke Universität Magdeburg

[3] C++ Programming. http://www.cplusplus.com/doc/tutorial/

[4] Donald Gross and Carl M.Harris. Fundamentals of Queueing Theory. John

Wiley & Sons, New York, 3rd edition, 1998

[5] Dictionary of Algorithms and Data Structures: http://www.nist.gov/dads/

[6] Graham Horton. Slides of Lecture: An Introduction to Simulation.

Otto-von-Guericke Universität Magdeburg

[7] Glade User Interface Design Manual.

http://glade.gnome.org/manual/index.html

[8] Grunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi.

Queueing Networks and Markov Chains. John Wiley & Sons, New York,

1998.

[9] Ivo Adan and Jacques Resing. Queueing Theory. Eindhoven University of
Technology. The Netherlands, 2001

[10] Probability Distribution.
http://en.wikipedia.org/wiki/Probability_distribution

60

[11] Queueing Theory. http://en.wikipedia.org/wiki/Queueing_theory

[12] Sanja Lazarova-Molnar. The Proxel-based Method: Formalisation, Analysis

and Applications. PhD thesis, Otto-von-Guericke Universität Magdeburg,

November 2005

61

