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Abstract

Rare events can describe many real-world problems which exist in small probability.

Discrete event techniques are widely applied to analyze such rare event probability,

but it requires many replications to estimate accurate results.

Importance Sampling and Importance Splitting/RESTART are popular variance

reduction methods aim to increase the occurrence of rare event in the simulation to

reduce the simulation runtime.

In contrast, proxel-based simulation is a state space based simulation, which dis-

covers all system states during the simulation. The proxel-based method may be

a competitive method to the variance reduction methods and suitable to analyze

models containing rare events.

To show whether the proxel-based model is suitable for rare event simulation and

it is a competitive method to the variance reduction methods. The proxel-based

method was implemented with often studied academic rare event reliability and

queuing system models.

During the implementation, some challenges were encountered where the prob-

ability cut-off was used to overcome those challenges. The proxel-based results

were compared to results obtained using the RESTART method, where the proxel-

based method showed promising and competitive results compared to the RESTART

method.
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1. Introduction

This chapter represents the introduction of the thesis, which is organized as follows:

Section 1.1 represents the background and the motivation of the thesis. Section 1.2

describes the thesis goals. The last section represents the thesis outline.

1.1 Motivation

Simulation is a useful modeling tool that enables to validate how a specific system

evolves over time. Simulation has many different definitions that fit its main purpose.

A general description can be, simulation is a modeling method to monitor, analyze,

or investigate how a specific system behaves over time [RN16].

Jerry Banks defined simulation: ”Simulation is the imitation of the operation of a

real-world process or system over time” [Ban05]. Moreover, Eugen Lamers described

the goal of simulation with accurate estimating of a specific probability within a time

interval or to obtain an approximate probability of a particular event to happen as

fast as possible [Lam08].

Simulation process involves a good understanding of the complex system. However,

the study of the system as it behaves over time is done using a simulation model.

The simulation model is defined with the set of assumption and rules described with

mathematical and logical relationships between the system components [RN16].

The simulation model helps to predict how a specific system will perform under

certain conditions or even before the system is built. Thus, it is possible to predict

the performance of a particular system with different conditions [RN16].
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Simulation has many advantages and disadvantages. Some of them can be founded

in [Ban05]. In short, main simulation advantage is to help users to understand how

a system operates using certain input parameters, also “What if” questions can be

answered during the simulation process. However, simulation has some limitations,

for instance, some models are difficult to develop where expert knowledge is required.

Furthermore, simulation can be sometimes expensive and time-consuming [Ban05].

According to Roger McHaney, simulation approaches can be categorized into four

different categories [McH09]:

1. Continuous Simulation:

Continuous simulation is a continuous process, where a system can be modeled

by a set of differential equations to represent how the system continuously

evolve over time. Predator-prey models are good example models for such

simulation approach.

2. Monte Carlo Simulation (MC):

Monte Carlo simulation is a probability simulation method to estimate a prob-

ability where time has no role based on the use of random numbers. Monte

Carlo method rely on random sampling to estimate its results.

3. Discrete Event Simulation:

Discrete event simulation analyze a system as it evolve over time where the

state change of the system is represented as events in time. Discrete event

simulation is described more in Chapter 2.

4. Agent-based Modeling:

Mathematical modeling method of multiply connected agents to predict their

interact phenomenon. In other words, a complex modeling approach to analyze

complex systems, which consists of multiple interacting agents.

Some real-world problems exist in small probability; such probability can be ex-

tremely small e.g 10−15 or less and can result in serious consequences. For instance,

failure in a nuclear power plant leads to financial and human losses [RT09, PSW05].

Some of the application areas of rare event simulation are listed in [RT09, PSW05]

as follows:

• Nuclear physics, e.g. atomic accident



1.2. Thesis Goals 3

• Security systems, e.g. false alarms in radar

• Aircraft, spacecraft, e.g. Technical defects

• Mathematical Finance and Insurance Risk, e.g. ruins

• Manufacturing systems, e.g. breakdowns

In most of the rare event problems, the mathematical model can be complicated to

be calculated analytically due to its complexity. Estimating a probability which is

unlikely to happen can be time-consuming and ineffective [RT09, GUD15].

Solving rare event problems with standard discrete event simulation requires long

simulation runtime. After all, it may still require many replications to estimate

accurate results in the form of confidence intervals [LM05].

One way to solve such models is to make those rare events more frequent during the

simulation. Importance Sampling and Importance Splitting/RESTART are popu-

lar variance reduction methods aim to make the increase the occurrence of those

events during the simulation [PSW05]. Importance Sampling and Importance Split-

ting/RESTART are discussed in Chapter 2.

G. Horton proposed a new computational simulation approach in [Hor02]. This

new approach is called Proxel-based analysis. This approach is easier to understand

and implement compared to the variance reduction methods, where no differential

equations are needed [LMH03b].

Proxel-based simulation discovers all system states in the simulation. For this reason,

we believe that proxel-based simulation is a competitive approach to the existing rare

event simulation methods, where all events in the model have the same importance

[LMH03b].

For this purpose, we implement the proxel-based method to some commonly studied

rare event models from the rare event simulation literature. And the results obtained

using the proxel-based are compared to the one obtained by the RESTART technique

(see Section 2.7).

1.2 Thesis Goals

In this section, we present the goals of this thesis, where the primary goal we are

trying to achieve is to show whether that proxel-based method is a competitive

method to the RESTART method.
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In that manner, this thesis should answer several questions to achieve the primary

goal, which is whether proxel-based is competitive. Those questions can be listed as

follows:

1. How accurate the proxel-based method compared to the RESTART method?

2. Is the proxel-based method a competitive approach regarding the computa-

tional runtime?

3. Is the proxel-based method efficient to analyze non-Markovian rare event

model?

Based on the answers to the above-asked questions we can show whether the proxel-

based method is competitive approach to RESTART method.

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 2: provides the theoretical background, where we review some ad-

vantages and disadvantages of several rare events simulation approaches.

• Chapter 3: presents a detailed implementation done in this work.

• Chapter 4: discusses and evaluates the implementation results.

• Chapter 5: represents the summary and conclusion of this thesis, followed

by the future work.



2. Background

The purpose of this chapter is to represent the general background of the thesis.

The background is organized as follows:

First, we present an overview of discrete stochastic models, including Stochastic

Petri Net (SPN). Second, we represent the discrete event simulation approach as a

simulation approach for the rare event.

Third, we discuss the commonly used rare event simulation methods: Importance

Sampling and Importance Splitting. Fourth, we present our proxel-based method

followed by some of the rare event simulation tools in the next section.

Last, we discuss the rare event simulation methods reviewed in this chapter. And

based on this discussion, we represent an introduction to the implementation Chap-

ter 3.

2.1 Discrete Stochastic Models

Stochastic models are a mathematical modeling representation of a system, which

can describe various real-world processes. Those stochastic models consist of con-

nected events, where the state change in the model occurs depends on a random

process. The random process can be discrete or continuous [LM05].

Example of a discrete model can be people waiting in a queue in front of an ATM,

where the number people in the queue and the busy status of the ATM are considered

to be discrete. Predator-prey can be an excellent example of continuous models

[LM05, McH09].
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The random variables are described by a distribution function, which can be mod-

eled with the Probability Density Function ”PDF” or the Cumulative Distribution

Function ”CDF” [LM05].

• FX(x ) represent the Cumulative Distribution Function, described as:

FX(x) = Pr{X ≤ x} (2.1)

• fX(x) represent the Probability Density Function, described as:

fX(x) =
d

dx
FX(x) (2.2)

Instantaneous Rate Function ”IRF” can represent the rate within the event might

happen in a time interval τ . Instantaneous rate function is sometimes called the

hazard rate function, and it is calculated as follows:

µ(τ) =
f(τ)

1− F (τ)
(2.3)

Analysis of discrete stochastic models :

Discrete stochastic models can be solved using transient and steady-state solution

analysis. The difference between those two analysis type that steady-state solution

is the solution as the model state at equilibrium, where no change is occurring

anymore. While the transient probability describes the model as it still evolves over

time in the form of probabilities before it reaches equilibrium state [LM05].

2.1.1 Stochastic Petri Nets

Stochastic Petri Nets (SPNs) are graphical modeling tool proposed by Carl Adam

Petri in 1962 [Pet62]. They are a graphical and mathematical representation method

to model and evaluate discrete stochastic models. SPNs can describe many complex

systems in a more straightforward way using the state and state changes models

[Zim07].
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T1 P1 P2T2 T3 

T1 P1 P2T2 T3 

T3 Fires 

Figure 2.1: Stochastic Petri Nets model example

Figure 2.1 is a Stochastic Petri Nets model example for a single queue with one

server, the figure is adapted from [LM05].

• Places are represented by circles. P1 represent the queue and P2 corresponds

to the server.

• Transitions are drawn as bars. T1 is a timed transition corresponds to a new

customer arrives at the system. T2 is Immediate transition corresponds to a

customer move from the queue to being served when the server is free. While

T3 is a timed transition corresponds to a customer leaving the system.

• Arcs, represented by arrow connecting places and transitions

• Tokens are drawn as filled circles. In our example tokens corresponds to cus-

tomers in the system.

As seen in Figure 2.1, after a customer service is completed, which is represented by

transition T3 fired. T2 immediately fire where a customer move from P1 to P2.

In addition to the mentioned above, some additional rules are used to describe the

model as it behaves over time. Stochastic Petri Nets represent a powerful modeling

tool to model many real-world processes in simplified models [LM05].

2.2 Discrete Event Simulation

Discrete event simulation is a straightforward approach used to analyze discrete

models. In other words, it is a simulation approach to model systems where the

state variable evolve at discrete points of time [LM05, Ban05].
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In discrete event simulation, the system is first translated to a conceptual represen-

tation, where random variable describes the events in the model. Once the system

model is converted and validated, the model is then simulated several times. Af-

ter the simulation, the simulation results are represented in the form of confidence

interval [LM05, L’E90].

Discrete event simulation has some limitations when the model of interest contains a

rare event. For instance, estimating a rare event probability requires long simulation

runtime to achieve a reasonable accuracy probability [Zim07].

As overall approach discrete event simulation is a straightforward approach to un-

derstand. However, some models require a large number of replications such as in

rare events models, or models with large state space [LM05, Zim07].

2.3 Importance Sampling

Monte Carlo simulation has some limitation when an event of interest has very small

probability. Estimating a tiny probability with Monte Carlo algorithm requires a

large number of samples to detect the occurrence of the rare event [LMT09].

Importance Sampling (IS) overcomes the limitation of Standard Monte Carlo simula-

tion when a probability of interest is a rare event. IS is a popular variance reduction

technique to estimate the rare event probability, by which it makes the rare event

in a system of less rare and more frequent [LMT09].

The basic idea of Importance Sampling is to change the original probability distri-

bution of the model by a new one to increase the occurrence of the rare event, which

is more important for the simulation [GI89, LMT09].

2.3.1 Algorithm

Importance Sampling (IS) is not scope of this work ( see Section 2.7). Therefore,

we will not explain the whole algorithm but a more detailed description of the IS

algorithm can be found in [AHO95, GW97, LMT09, AMD+].

Importance Sampling is a variance reduction technique which aims to achieve ac-

curate estimation through short simulation time. Importance Sampling idea is to

sample more often particular random variables in the simulation, which has more

influence on the parameter being evaluated [SSG97].

This is done through changing the original probability distribution of the model to

one which encourages the important values. The probability estimation is done using
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the likelihood ratio estimator. The efficiency of the Importance Sampling method

is mostly relying on the choice of biased distribution [SSG97].

2.3.2 Advantages and Disadvantages

Importance Sampling is a robust approach to overcome Monte Carlo or discrete

event simulation limitations when dealing with rare event. However, it has some

advantages and disadvantages, some of them are listed in [Gar00, MSM09, LMT09].

Some of those advantages and disadvantages are:

1. Advantages

• Overcomes the limitation of Monte Carlo simulation when estimating a

rare event probability.

• Can be applied to various of models.

2. Disadvantages

• Difficult to use, selection of the optimal change of measure requires a deep

knowledge of the model.

As a summary, the primary challenge to the Importance Sampling method lies in

the choice of the new distribution function. Although Importance Sampling has

some promising published results, but we focus on the RESTART method (see Sec-

tion 2.7).

2.4 Importance Splitting/RESTART

Importance Splitting is another variance reduction technique. It was first discussed

in 1951 by Herman Kahn and T. E. Harris [KH51] as an alternative approach for

Importance Sampling. The idea first was to split the state space into importance

regions, and a number of retrials are performed after reaching the importance region

[Gar00].

In 1991, RESTART (REpetitive Simulation Trails After Reaching Thresholds) was

introduced by M. and J. Villen-Altamirano in [VAVA91]. RESTART was first

proposed in 1970 by Bayes [Bay70] but under the name of Importance Sampling

[VAVA99, GG02].

There are some discussions whether RESTART technique belongs to the same Im-

portance Splitting class, or it is included in the Importance Splitting technique. M.
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and J. Villen-Altamiran pointed out that RESTART does not belong to the same

Importance Splitting class for two reasons mentioned in Table 2.1 [VAVA99].

Importance Splitting RESTART

Retrials continues until the end of
simulation

Retrials continues until leaving
the importance region

Retrials are made only at the first
stored point of the main trial

Retrials are made on every stored
point of the main trial

Table 2.1: Importance Splitting and RESTART Comparison

According to M. and J. Villen-Altamiran, RESTART has some advantages over the

Importance Splitting method. The Importance Splitting method has some limitation

where each retrial can leave the importance region during the simulation, which

prevents steady-state simulation and limit this method to transient state simulation

[VAVA99].

RESTART algorithm has been explained in several papers, among these papers

[VAVA91, VAVA99, VAVA06, VA07, VA09, VAVA11]. RESTART method estimates

the rare event probability through executing a number of retrials after reaching a

specific state of interest where the rare event is more likely to occur [VAVA99].

2.4.1 Algorithm

Let’s assume that S is the state space and A is the rare event. The space state is

divided into nested sub sequence regions Ci and (C1 ⊃ C2 ⊃ ... ⊃ CM), whereas i is

bigger then the more importance of the region. The space state is divided according

to a defined importance function Φ and thresholds Ti, where (1 ≤ i ≤ M) and

Φ ≥ Ti [VA09].

The choice of the importance function is defined by the thresholds, where the impor-

tance function is chosen in a way it encourages reaching the rare event after passing

the thresholds Ti [VA09].

Bi and Di are two more events defined as follows :

• Bi occurs when a system enters the importance region.

• Di occurs when a system leaves the importance region.
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A

S(t)

t (time)

T1

T2

B1 D1 D2 B2 

Figure 2.2: Normal simulation

B1

A

S(t)

t (time)

D1R B2D12 D11D13
T1

T2

Figure 2.3: Simulation with RESTART

The rare event probability Pr(A) is defined in the simulation as the system’s prob-

ability being in the rare set.

Figure 2.2 shows a normal simulation, where a system evolve over time while Fig-

ure 2.3 shows a simulation using RESTART. Figure 2.2 and Figure 2.3 are adapted

from [VAVA91].

RESTART is described in this section based on [VAVA91, VAVA99, VAVA06, VA07,

VA09, VAVA11].

RESTART works as follows:

1. The simulation proceeds until the end of the simulation, where the path is

called the main trial.

2. After event B1 happens in the main trial, the state is stored, and all retrials

begin from the stored event B1.

3. After event D1 happens, the state is restored from the saved event B1 and [B1,

D1) interval is simulated again.

4. The steps (2 & 3) are performed R1 times, each time starting with the same

B1 but with different ending event D11, D12, ..., D1R1 .

5. After event D1Ri
happens, the simulation proceed until another event B2 to

happens.

6. The above process is applied as shown in Figure 2.3.
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2.4.2 Advantages and Disadvantages

Although RESTART is more straightforward method to be implement on more mod-

els compared to Importance Sampling, it still has some drawbacks. The advantages

and disadvantages are derived from [Gar00].

1. Advantages

• Faster approach and easier to implement to various of models compared

to the Importance Sampling method.

2. Disadvantages

• Importance function can be complicated for some models.

• The offspring of a split have the same history until the simulation enter

another importance region.

As a summary of this section, RESTART method has advantages over the Impor-

tance Splitting method. A further comparison between RESTART and Importance

Sampling will be presented in Section 2.6.

2.5 Proxel-based Simulation

A new computational simulation approach was proposed by G. Horton in [Hor02].

This new approach is called Proxel-based analysis [Hor02].

The Proxel-based approach may be an ambitious alternative approach to the discrete

event simulation. It is easier approach compared to variance reduction approaches,

where differential equations are not needed [LMH03b]. Proxel-based method can be

applied to analyze several discrete stochastic models categories [LM05].

The proxel-based method allows tracking the probability of a particular event to

happen during a specific time interval, where all the system states are discovered in

the simulation. Each proxel has a certain amount of information to determine how

a model behave from one step to another [LMH03b, LMH03a].

Proxel can be represented as follows [LM05]:

Proxel =
(
(DiscreteState, AgeV ector), T ime,Route, Probability

)
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• Discrete State: describe the notation of ”tangible marking”, represented with

”m”.

• Age Vector: is the time information of a certain state change, which indicate

the time a state change has been active. It is represented with ”τ”.

• Time: corresponds the global simulation time, represented with ”t”.

• Route: describe the path in which the model reached the certain state.

• Probability: is the probability of the combination of all of a discrete state, an

age vector, a global simulation time, and a route(s) of being in a given state.

It is represented with ”Pr”.

Example

Figure 2.4: Weather model SPN

To illustrate the proxel-based method, lets assume a simple weather example ( Fig-

ure 2.4) with two states: either ”Sunny” or ”Rainy”. Also, two change transitions

FS2R and FR2S which corresponds to the state change from Sunny to Rainy or vice

versa. This example is adapted from [LM05].

Figure 2.5 illustrate the weather example in a proxel tree. The proxel tree represents

the proxel generation process. ”S” corresponds to state ”Sunny” and ”R” corresponds

to state ”Rainy”. First, a proxel-based method starts always with an initial proxel

with age vector and route equal to zero and probability equal to 1, where it is the

only proxel at the time t=0 [LM05].

In the next time step, new proxels are generated from the initial proxel. If transition

didn’t fire the age vector is incremented by the time step, otherwise it is reset to
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Figure 2.5: Proxel tree of the weather model

zero. The following process is repeated. In our current example, two proxels are

generated from the initial proxel as shown in the figure.

Probabilities are ignored in the figure above for simplicity reasons. However, the

probabilities in proxel tree are calculated as follows :

• Probability created after the transition x fired

Pr = µx(t)×∆t× Prparent (2.4)

where µ(x) is instantaneous rate function.∫ t1+∆t

t1

µ(x)dx (2.5)

• Probability created after no transition fired, where
∑

x Prx is the sum of all

probabilities of all other proxel at that time are given and Prparent the proba-

bility of the parent’s proxel from which proxel is generated.

Pr = Prparent −
∑
x

Prx (2.6)
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2.5.1 Proxel Algorithm discussion

Determination of the Size of ∆t

Choosing the time step size is an essential factor in proxel-based simulation. For

small models, the decision of the time step can be chosen quickly. However, as the

model gets more complex, the choice of the time step gets more complicated [LM05].

A reasonable choice should record all the state change in the system. Therefore,

the decision of the time step should be taken carefully relying on the distribution

functions in the model [LM05].

Some rules were suggested by Sanja Lazarova-Molnar in [LM05] to calculate the

acceptable time step in a model, as well as the globally acceptable time step. For

instance, the relatively acceptable time step for every state change RATS(SC) can

be calculated as follows:

• Uniform(a,b) RATS(SC) =
a+ b

4
.

• Exponential(λ) RATS(SC) =
1

2λ
.

• Normal(µ, σ) RATS(SC) =
µ

2
.

• Weibull(α, β) RATS(SC) =
α

2
× Γ(

1

β
+ 1).

After checking the acceptable time step for every state change in the system, the

global acceptable time step (GATS) can be calculated as follows:

GATS(M) = min
∀SC∈M

RATS(SC) (2.7)

M corresponds to the discrete stochastic model, and SC to the state change.

When choosing the time step, it should be taken into consideration that the smaller

the time step, the longer runtime to reach the steady-state. However, choosing

smaller time step would achieve a highly accurate solution [LM05].

Merging proxels

One feature of the proxel-based method is merging proxels. In other words, when

a new proxel is being generated, and it happens that another proxel has the same

discrete state and age vector in the same simulation time. In this case, both the
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proxels are merged into one proxel with the same discrete state and age vector while

the probabilities of both proxels are added together [LM05, KBH09].

However, one important rule must be fulfilled to merge proxels, which is the route

of the proxel should be ignored [KBH09]. To illustrate this feature, we consider the

same weather example Figure 2.4.

Figure 2.6: Merging proxels example

Figure 2.6 is the proxel tree generation for the weather example, whereas seen in

the model the route of the proxel is avoided. Probabilities are ignored for simplicity

reasons. At simulation time t= 3∆t, two proxels are being generated having the

same discrete state and age vector. Therefore, at simulation time 4∆t, both of the

proxels will be merged, and two proxels will be generated from the merged proxels.

Non-Markovian Models

Another particular feature in the proxel-based method is solving non-Markovian

models. Proxel-based method turns non-Markovian models to Markovian ones by

integrating the age information in the state definition. The proxel-based method

calculates the probability for the state changes through extending the state to the

most likely state change in time [LM05, KBH09]. Sanja Lazarova-Molnar provided

an example to explain this feature in more details in [LM05].



2.5. Proxel-based Simulation 17

Threshold-based pruning

The proxel-based method generates proxels exponentially with respect to the number

of the discrete time step, which sometimes leads to a huge amount of proxels as the

simulation time increase. This may cause complexity in the proxel-based algorithm

[Hor02].

Graham Horton proposed the threshold-based pruning as a bounding method for the

proxel algorithm [Hor02]. A specific probability threshold is defined for generating

new proxels, where proxels are generated if the maximum simulation time is not

reached and the generated proxel’s probability is greater than a defined threshold

[Hor02, KBH09].

Estimating very small probability using the proxel-based method requires more

memory and longer computational runtime [Hor02, KBH09]. Therefore, the threshold-

based pruning technique can be a useful method to support the simulation in esti-

mate rare event probability.

2.5.2 Advantages and disadvantages

The goal of this thesis is to show whether the proxel-based method is a competitive

approach to the existing rare event simulation approaches when a system of interest

contains rare event. The listed advantages and disadvantages of the proxel-based

method are taken from [LM05].

1. Advantages

• All events in the simulation has the same importance.

• Flexible and able to simulate different classes of stochastic models.

• Differential equations are not needed.

2. Disadvantages

• Problem with the state space of a model, known as the state space ex-

plosion.

The proxel-based method has many unique features, which make this method very

flexible and easy to implement. Nevertheless, proxel has one known disadvantage

that due to its deterministic nature. As seen in Figure 2.6, the state space expands
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on each time step, which makes solving a large-scale model using the proxel-based

method not suggested [LM05].

However, more discussion about proxel advantages and limitation will be presented

further in this thesis.

2.6 Rare Event Simulation Tools

In this section, we present some of the simulation tools used to analyze rare event

models. Many simulation tools support designing Stochastic Petri Nets models and

computing its performance analysis, such as GreatSPN [BBC+09], SPNP [HTT00],

SimGine [KAAJB13], CPN tools [JKW07], Möbius [CGK+09], TimeNet [GKZH95],

UltraSAN [CFJ+91], and WebSPN [LSP16].

However, among the mentioned tools few support rare event simulation, which

will be discussed in this section. For rare event simulation, Importance Splitting,

RESTART, or Importance Sampling (IS) are required to speed up the simulation

and estimate rare event in reasonable time.

UltraSAN

UltraSAN is a simulation tool developed by the department of electrical and com-

puter engineering, at the University of Arizona Tucson [CFJ+91]. UltraSAN tool

uses stochastic activity network (SAN) to estimate a probability in a system, SAN

is an extension of Stochastic Petri Nets. UltraSAN supports the simulation of the

rare event with Importance Sampling [OS94].

SPNP

Stochastic Petri Net package (SPNP) is another simulation tool to analyze Stochastic

Petri Nets models. It is developed at the Duke University. This modeling tool

supports the simulation of non-Markovian SPNs, an analytic numerical solution of

Markovian models, and Fluid Stochastic Petri Nets [HTT00]. SPNP support the

simulation of the rare event using Importance Splitting [TT00].

TimeNet

TimeNet is a modeling framework which supports RESTART method [Kel96]. It

was first developed in [GKZH95] as a modeling tool for Stochastic Petri Nets. The

first version was developed at the Technical University of Berlin, Germany.

Nowadays, TimeNet is supported by the Software Engineering group at the Tech-

nical University of Ilmenau, Germany [Tim]. TimeNet supports the simulation of
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Extended Deterministic and Stochastic Petri Nets eDSPNs, Stochastic Colored Petri

Nets SCPNs, and Markov Chain. Also, TimeNet supports the simulation of the rare

events using the RESTART method. TimeNet GUI is developed in Java, and some

other solution modules are done in C++ and C [GKZH95, Tim].

TimeNet has many promising published results [Zim06, Zim10, ZRWL16, Zim18].

2.7 Existing Rare Event Methods Discussion

In this chapter, different rare event simulation approaches are described, and some

of their advantages and disadvantages are discussed. However, rare event models

are still problematic. For instance, many replications are required in discrete-event

simulation so that the rare events occur, nonetheless, sometimes they never happen

in the simulation [LM05].

Moreover, standard Monte Carlo simulation has limitations estimating rare event

probability, where accurate estimation using the standard Monte Carlo simulation

is not possible [RR08].

Importance Sampling and Importance Splitting/RESTART are widely used ap-

proaches for rare event simulation. To show that the proxel-based method is a

competitive method it is necessary to create a comparison criterion.

Glasserman et al. mentioned in [GHSZ99] that Importance Sampling can estimate

worse results than standard MC simulation if the change of measure was chosen

improperly. Moreover, they stated that finding the right change of measure become

complicated as the model of interest gets complex, and finding the right change of

measure requires a rough approximation of the rare event probability [GHSZ99].

According to Manuel and José Villén-Altamirano, RESTART method is more robust

and flexible approach compared to Importance Sampling, where using RESTART it

is possible to set more adequate thresholds in the system also the simulation does

not rely on any particular feature of the system [VAVA11].

Zimmermann et al. implemented Important Sampling and RESTART on the same

system failure model in [ZRWL16]. Although both of the applied methods serve

the same goal in estimating the rare event probability. However, implementing

RESTART method has shown to be easier than Importance Sampling.

Marnix Garvels and Dirk Kroese compared RESTART with Importance Sampling

implementation in [GK98]. The authors pointed out that RESTART is more ro-
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bust estimator, where Importance Sampling is more challenging to implement and

requires more optimization parameters [GK98].

As already mentioned in Section 2.6, RESTART has been implemented in TimeNet.

Thus, it is easier to estimate rare event probabilities using a TimeNet graphic inter-

face after providing the Stochastic Petri Nets model.

The proxel-based method gives all events in the simulation the same importance,

where each proxel has a certain amount of information to determine how a model

behave from one step to another [LM05].

A comparison of the proxel-based method and discrete event simulation was made

by Horton and Lazarova in [LMH03a]. A model containing rare event was simulated

using both of the simulation methods. The discrete event simulation was performed

on SIMPLEX3, where the computational runtime took almost 25 minutes. In con-

trast, using the proxel-based method the computational runtime was 4.2 seconds

using time step ∆t=0.05 [LMH03a].

Nevertheless, talking about a comparison between discrete event simulation and

proxel-based is not fair and not a sufficient comparison. Therefore, A further com-

parison will be discussed in the next chapters between RESTART method, which is

widely used for rare event simulation, and the proxel-based method.
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The reader should be now familiar with the goal and the motivation of the thesis

described in previous chapters. This chapter will provide a further discussion about

the implementation done in this thesis.

3.1 Overview

Queuing system and reliability models represent commonly studied models in the

rare event community. Queuing models such as single queue model and tandem

queuing system are good representations for numerous technical systems, communi-

cation networks, logistics, etc [RN16, Hei95].

An important commonly studied rare event in the queuing system can be described

by the long waiting time or by the buffer overload. While in the reliability models,

the rare event is described as the failure of the system.

In this chapter, we explain the implementation of the proxel-based method in rare

event models in queuing systems and reliability.

This chapter is organized as follows:

• Section 3.2 describes the RESTART and proxel-based implementation of a

system failure model.

• Section 3.3 presents the proxel-based method implementation of queuing

models, then in a tandem queue model.

• Section 3.4 describes the rare event probability calculation in the all of the

models discussed in this paper.
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• Section 3.5 represents a summary of the implementation, including the diffi-

culties and challenges.

3.2 System Failure Model

System failure models are often studied models in the analysis of rare events. It

can be described by the reliability of a system to remain functional under certain

conditions. The rare event in such models is represented by the failure of the system,

which is designed for high reliability [Hei95].

In this section, we describe both RESTART and proxel-based methods implemen-

tation of a system failure model.

Zimmermann et al. implemented both RESTART and Importance Sampling algo-

rithms of a system failure model in [ZRWL16]. Figure 3.1 represents the model

described in the paper, where N corresponds the number of components in the sys-

tem, which may fail.

NP0 P1 P2 P3

T01

T10 T21 T32

T12 T23

Figure 3.1: System failure model SPN

P0, P1, P2, and P3 represent the four states of the components, which describes the

stage of deterioration in the system.

T01, T12, T23 represent the components failure transitions in the model. While,

components repair is described with the opposite transitions T10, T21, and T32.

We are interested in the probability of the failure of the system, which is described

as having at least one component in place P3.

3.2.1 RESTART Implementation in TimeNet

As explained in Chapter 2, RESTART is included in TimeNet. In this section, we

present the RESTART implementation of the system failure model in TimeNet.
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Repair timed transitions T10, T21, and T32 are exponentially distributed with repair

rate of 1. And the failure timed transitions T01, T12, and T23 are exponentially

distributed with rate ε, ε values varies between 1.0E-01 and 1.0E-03.

All timed transitions are set to be infinite server semantic, which means that the

timed transitions are affected by the number of components in the system places

(P0, P1, P2, P3).

Figure 3.2: System failure model in TimeNet

Figure 3.2 is a screenshot from TimeNet. ε value in the figure is 1000 due to that

TimeNet uses average delays instead of rates for all transitions, which means ε is

equal to 1
1000

= 1.00E-03.

The number of components N is equal to 10. Two equations measure are set by

the authors: the probability of the rare event and the Importance function. The

rare event is defined so that at least one component N fails, which is represented by

(P3>0).

The Importance function is an indicator to show the closeness to the rare event,

which is defined with (#P1>0)+2*(#P2>0)+4*(#P3>0). We will use the auto-

matic RESTART from TimeNet to estimate the rare event probabilities.

Figure 3.3 shows the necessary steps to start a stationary RESTART simulation in

TimeNet, which estimate the steady-state rare event probability using RESTART al-

gorithm [ZK]. The splitting factor is by default equal to 4. The maximum RESTART

threshold is set to 3, and the Importance function is set to be a heuristic function.

The heuristic function and threshold are importance to direct the simulation to the
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important region of interest.

Figure 3.3: Automatic RESTART in TimeNet

3.2.2 Proxel-Based Implementation

In this section, we describe the proxel-based implementation of the system failure

model.

To speed up the simulation, the route of the proxels will be avoided in the proxel-

based method. This will reduce generating new proxels, where some proxels are

merged as explained in Chapter 2.

The discrete state of a proxel consists of the number of components in each of the

places: P0, P1, P2, and P3. All transitions in the model are exponentially dis-

tributed. Therefore, the age vector is ignored since the hazard function is constant.

As a result, proxels are represented with the number of components in each of the

state places, associated with both of simulation time ”t”, and the probability ”Pr”.

Proxels are represented as follows:

Proxel =
(
(P0, P1, P2, P3), t, P r

)
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((10,0,0,0), 0, 1.0)

((9,1,0,0), Δt, *)

((10,0,0,0), Δt,*) ((10,0,0,0), 2Δt,*)

((9,0,1,0), 2Δt,*)

((8,2,0,0), 2Δt,*)

((9,1,0,0), 2Δt,*)

((8,1,1,0), 3Δt,*)

((9,1,0,0), 3Δt,*)

((9,0,0,1), 3Δt,*)

((9,0,1,0), 3Δt,*)

((8,2,0,0), 3Δt,*)

((7,3,0,0), 3Δt,*)

((10,0,0,0), 3Δt,*)

Figure 3.4: Proxel tree of the system failure model

Figure 3.4 shows the proxel generation process from the initial state until t = 3∆t.

Probabilities are ignored for simplicity purpose. As already discussed in Chapter 2,

proxel-based method starts always with an initial proxel with simulation time t=0

and probability equal to 1.0. At initial state, we have 10 tokens only at P0. Initial

proxel is represented as follows:

Proxelinitial =
(
(10, 0, 0, 0), 0, 1.0

)
As seen in Figure 3.4, after one time step, at simulation t= ∆t, either transition T01

fires, where one token move from P0 to P1, or no transitions fire. Yellow colored

proxels represent the merged proxels at the current discrete time step.

The rare event probability is defined with the probability of failure of the system,

which is represented with having at least one token in P3 (#P3>0). The rare event

first occurs at simulation t = 3∆t, which is highlighted in the figure with red color.

To illustrate the probability calculation, let’s consider the rate of the transitions

T01, T12, and T23 to be α, and the rate of the transitions T10, T12, and T32 to be

ε. In this model, all timed transitions are set to be infinite server semantic, that is



26 3. Implementation

mean when a transition fires, the number of tokens from the place fired is multiplied

in the probability.

Probabilities are calculated as follows:

Prrepair = m×∆t× α× Prparent

Prfailure = m×∆t× ε× Prparent

PrN = Prparent −
∑
x

Prx

– Prrepair corresponds to the probability of a proxel created when repair

transition fired.

– Prfailure corresponds to the probability of a proxel created when failure

transition fired.

– Prparent corresponds to the parent’s proxel probability, from which the

proxel is generated.

– m is the current number of components in a place before the transition

fired.

– PrN corresponds to the probability of a proxel created when no transi-

tions fire at that given time.

–
∑

x Prx is the sum of probabilities of all proxel created of a common

proxel parent at a given time.

In this section, we describe both of the RESTART and proxel-based method im-

plementation of a system failure model, where the RESTART implementation was

done in TimeNet. The experiment results of the current implementations will be

discussed in Chapter 4.

3.3 Queuing Systems Models

In this section, we present a further discussion of the proxel-based implementation

in queuing systems. According to Kendall’s Notation, single queue process can

be represented with a notation of five elements A/B/X/Y/Z, which describes the

queuing model system [KH07, Gro08].
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In our work, we represent the single queue models with the first the three elements:

A/B/C, where A is the inter-arrival time distribution, B the service time distribu-

tion, and C the number of servers in the system. A and B can be described with

either M for Markovian or G for General.

This section consists of two main study cases as follows:

• Single server queuing models

• Tandem queue model

3.3.1 Single Server Queuing Models

A single server queuing system is another often studied model in the analysis of rare

events. Figure 3.5 shows the conceptual representation of the queuing model, where

the system model consists of the number of arrivals system and a single server which

can serve only one customer at time [BGdMT06].

For explanation reasons, let’s assume that the arrival and service are exponentially

distributed. Customers arrive at the queue with an arrival rate of λ and leave the

system with a service rate of µ. The system can process only one customer at a

time. It has only two states ”Ready” or ”Busy [YV04, BGdMT06].

For queue stability, the service rate should be greater than the arrival rate λ<µ.

The traffic load on the queue is defined ρ = λ/µ [YV04].

Figure 3.5: Single server queuing system model [YV04]

The rare event is defined as the system reach a level ”L” of waiting customers at the

queuing system during a busy interval of time.

3.3.1.1 M/M/1 Model

In this section, we consider a Markovian single server queuing system. Customers

arrive with exponentially distributed arrival rate λ and leave with an exponentially

distributed service rate µ.
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As the transitions in this model are exponentially distributed, that’s means the

hazard rate function is constant. Therefore, proxels are represented as follows:

(
S, t, Pr

)
S is the number of customers at the system, t corresponds to the global simulation

time, and Pr to the probability of being in the current state.

(0, 0, 1.0)

(1, Δt, *)

(0, Δt, *)

(2, 2Δt, *)

(1, 2Δt, *)

(0, 2Δt, *)

(3, 3Δt, *)

(2, 3Δt, *)

(1, 3Δt, *)

(0, 3Δt, *)

Figure 3.6: Proxel tree of the M/M/1 model

Figure 3.6 shows the proxel generation process starting from the initial state until

simulation t=3∆t. Probabilities in the figure are ignored for simplicity reasons. At

initial proxel, there are no customers at the system.

To illustrate the model process, let’s consider one time step after the initial state.

After the initial proxel, we have two possibilities: the arrival of a new customer or

no arrival of a new customer. Yellow colored proxels corresponds to the merged

proxels.

The rare event is defined with the probability of overflow of the system, which

corresponds to the probability of having a number of customers at the system exceed

a certain threshold ”L”.

Probabilities are calculated as follows:

Prarrival = Prparent ×∆t× λ

Prservice = Prparent ×∆t× µ

PrN = Prparent − (Prarrival + Prservice)
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– Prarrival corresponds to the probability of a proxel created when a cus-

tomer arrives at the system, and λ is the arrival rate.

– Prservice corresponds to the probability of a proxel created when a cus-

tomer leaves the system, and µ is the service rate.

– Prparent corresponds to the parent’s proxel probability, from which the

proxel is generated.

– PrN corresponds to the probability of a proxel created when no transition

fire at that given time.

In this section, we describe the proxel-based method implementation of a Markovian

single server queuing system. The purpose of the proxel-based implementation of the

M/M/1 model is to validate our proxel-based code with the M/M/1 model analytic

results.

3.3.1.2 G/G/1 Model

In this section, we describe the proxel-based implementation of a non-Markovian

single server queuing system. As mentioned in Chapter 2, proxel-based method

solve non-Markovian models by converting them to Markovian one. The probability

of the transition to fire within a time step is determined by the hazard function.

The proxel state in our current model is determined with (S, τ1, τ2). S is the

number of customers at the system, τ1 and τ2 represent the age vector of the arrival

and service transitions respectively.

Proxels are represented as follows:

(
(S, τ1, τ2), t, P r

)
Figure 3.7 show the proxel generation process starting from the initial state until

t=2∆t with time step of ∆t. Proxel starts with initial proxel with no customers

at the system with a probability of 1.0. Customers arrive and leave the system

according to defined distributed functions. Probabilities in the figure are ignored for

simplicity reasons.

Once there is at least one customer in the system, in the next time step three proxels

are generated as follows:

• A Customer arrives to the system, arrival age vector is reset, while service age

vector is incremented by the time step.
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(0, 0, 0),1.0)

(1, 0, 0), Δt, *)

(0, Δt, 0), Δt, *)

(2, 0, Δt), 2Δt,*)

(0, Δt, 0), 2Δt,*)

(1, Δt, Δt), 2Δt,*)

(1, 0, 0), 2Δt,*)

(0, 2Δt, 0), 2Δt,*)

Figure 3.7: Proxel tree of the G/G/1 model

• A customer leaves the system, and service age vector is reset, while arrival age

vector is incremented by the time step.

• no state change, both age vectors are incremented by the time step.

In this model, more proxels are generated on every simulation time step compared to

the M/M/1 model (Figure 3.6). For instance, at simulation time t=2∆t in M/M/1

model only three proxels are generated on that time while in G/G/1 model, five

proxels are generated. That is due to the discrete state in the M/M/1 model consists

of the number of customers in the system only. By contrast in the G/G/1, the

discrete state of the model consists of the number of customers in the systems

associated with the age vector of the arrival and service respectively.

3.3.2 Tandem Queue Model

Tandem queue systems are often studied queuing model in rare event literature,

that’s due to the possibility of estimating various rare events in the model [GK98,

VAVA99]. The rare event of interest in this model is defined with the overflow of

the queue.

Figure 3.8 represents the conceptual representation of the tandem queue model.

Customers arrive at the first queuing system with an arrival rate of λ, and after

being served with service rate µ1 they enter another queuing system with service

rate µ2.

The traffic load on the each queue is defined ρi = λ/µi.
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Figure 3.8: Tandem queue model [VAVA99]

In tandem queue systems, the discrete state consists of the number of customers at

the first queuing system q1 and in the second queuing system q2:

(q1, q2)

Three definitions of the rare event will be evaluated using the proxel-based method

in this section as follows:

• q2 ≥ L

First case, the rare event is defined as the number of customers at the second

queue system is greater or equal to a threshold ”L”.

• (q1 + q2) ≥ L

Second case, the rare event is defined as the number of customers in both of

the queuing systems is greater or equal to a threshold ”L”

• min(q1, q2) ≥ L

Last case, the rare event is defined as the minimum number of customers at

the first or second queuing systems is greater or equal to a threshold ”L”. In

other words, the rare event is represented as (q1 ≥ L) ∩(q2 ≥ L).

The arrival rate and service rate in both queuing systems are exponentially dis-

tributed. Therefore, proxels are represented as follows:

(
(q1, q2), t, P r

)
(q1, q2) corresponds to the number of customers at the first and second queuing

systems respectively, t corresponds to the simulation time, and Pr probability of

being in the current state.

Figure 3.9 represents the proxel tree generation starting from the initial proxel until

simulation time 2∆t. Probabilities are ignored in the model for simplicity reasons.



32 3. Implementation

((0, 0), 0, 1.0)

((1, 0), Δt, *)

((0, 0), Δt, *)

((0, 1), 2Δt, *)

((1, 0), 2Δt, *)

((2, 0), 2Δt, *)

((0, 0), 2Δt, *)

Figure 3.9: Proxel tree of the tandem queue model

Starting from the initial proxel, there are no customers at both of the queuing

systems, that’s means at the next time step t=∆t either one customer arrives at the

first queuing system or no customer arrives.

Let’s consider the state with one customer at each of the queuing systems (1,1).

After one time step, we have 4 proxel possibilities:

• One customer arrives to the first queue (2,1).

• One customer is served by µ1 and arrives to second queuing system (0,2).

• One customer is served by µ2 and leave the second queuing system (1,0).

• No events was fired (1,1).

Probabilities in the model are calculated as follows:

Prarrive = Prparent ×∆t× λ

PrService1 = Prparent ×∆t× µ1

PrService2 = Prparent ×∆t× µ2

PrN = Prparent − (Prarrive + PrService1 + PrService2)

– Prarrive corresponds to the probability of a proxel created when a cus-

tomer arrives at the first queuing system, with an arrival rate of λ.

– PrService1 corresponds to the probability of a proxel created when a cus-

tomer is served by the first queuing system with a service rate of µ1 and

then enter the second queuing system.
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– PrService2 corresponds to the probability of a proxel created when a cus-

tomer is served by the second queuing system with a service rate of µ2

and then leave the system.

– Prparent corresponds to the parent’s proxel probability, from which the

proxel is generated.

– PrN corresponds to the probability a proxel created when no transitions

fire at that given time.

In this section, we describe the proxel-based implementation of a tandem queue

model with three different rare event study cases. The experiment results of the

current implementation will be presented in Chapter 4

3.4 Rare Event Probability Calculation

In all of the above models, the rare event probability is calculated on each of the

simulation time steps as the sum of specific proxel’s probability. For instance, in

system failure model proxels with (#P3>0) are added to form the rare event prob-

ability for the current discrete time state. While in the queuing models, proxels

having customers at the system higher than a specified threshold forms the rare

event probability for the current discrete time state.

During the proxel simulation, the rare event probability is added together on each

time step to form the rare event transient probability. All of the transient prob-

abilities are added into a one-dimensional array. At the end of the simulation,

the one-dimensional array contains the transient probabilities and the steady-state

probability.

3.5 Implementation Challenges

Due to that, all models of interest in this thesis are rare event models, where rare

event probability can be extremely small. Estimating very small probabilities would

require more memory and longer computational runtime.

To achieve better accuracy, it is necessary to use the threshold-based pruning bound-

ing technique explained in Chapter 2. The threshold-based pruning technique will

be used in all the discussed above models. Proxels are generated if the maximum

simulation time is not reached and the generated proxel’s probability is higher than

the selected probability cut-off value.



34 3. Implementation

In models with no rare event, choosing a probability threshold can be easy. On the

contrary, when the model of interest contains rare event, selecting such bounding

threshold can be tricky and complicated. Different probabilities threshold were

tested in the above models to achieve better accuracy.

Time step as well plays an essential role in the simulation runtime and the accuracy

of the simulation. It is recommended to choose a smaller time step then the globally

acceptable time step explained in Section 2.5.1. We tested several time step sizes

for the above models to examine how time step can affect the accuracy and the

simulation runtime.

As a summary, a combination of time step size and probability threshold should be

selected accurately to avoid longer runtime and in the same manner to achieve high

accuracy.



4. Evaluation

In this chapter, we analyze the results obtained from the implementation done in

the previous chapter.

4.1 Overview

In this chapter, we compare the results obtained using the proxel-based method with

other results obtained using the RESTART method. For the comparison, the exper-

imental error will be used to evaluate/calculate the accuracy of our implementation.

The proxel-based code is written in Java language. All experiments are done with

a personal laptop with setup settings as follows:

∗ Intel i7-7500U CPU 2.7GHz

∗ 8GB RAM

∗ Microsoft Windows 10

∗ Java 1.8.0

This chapter is organized as follows:

• Section 4.2 compares the results of both RESTART and proxel-based meth-

ods in the system failure model.

• Section 4.3 represents the results of the proxel-based implementation in three

different single queue models.

• Section 4.4 compares the results of the proxel-based implementation in a

tandem queue model.
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• Section 4.5 discusses the effect of time step size in the proxel-based method.

• Section 4.6 discusses the effect of probability cut-off in the proxel-based

method.

• Section 4.7 represents the summary and conclusion of this thesis, followed

by the future work.

4.2 System Failure Model

In this section, we compare the results of the system failure model using both of the

RESTART and proxel-based methods. However, both simulation methods were run

on a personal PC with the mentioned above setup.

Table 4.1 and Table 4.2 shows the computational runtime and accuracy for both

RESTART and proxel-based methods. Several failure rates ε values were tested,

where ε values and the analytic results were obtained from [ZRWL16].

ε Analytic result RESTART result Time (sec) % error

1.00E-01 8.9645E-03 9.0229E-03 1 0.65 %
2.00E-02 7.8397E-05 7.70516E-5 2 1.72 %
1.00E-02 9.9000E-06 9.8349E-6 4 0.66 %
2.00E-03 7.9840E-08 7.9164E-8 10 0.8 %
1.00E-03 9.9900E-09 9.3630E-9 43 6.27 %

Table 4.1: RESTART results for the system failure model

ε Analytic result Proxel result Time (sec) % error

1.00E-01 8.9645E-03 8.9645E-3 0.1 0 %
2.00E-02 7.8397E-05 7.8397E-5 0.04 0 %
1.00E-02 9.9000E-06 9.8999E-6 0.04 0.001 %
2.00E-03 7.9840E-08 7.9839E-8 0.04 0.001 %
1.00E-03 9.9900E-09 9.989E-09 0.04 0.01 %

Table 4.2: Proxel-based results for the system failure model

To obtain accurate results, we perform several runs in TimeNet. The splitting factor

was modified according to ε values, where it is important to increase the splitting

factor to achieve higher accuracy with smaller ε values.
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As overall results, RESTART method shows high accuracy with a short computa-

tional runtime. While the proxel-based method took milliseconds to achieve results

with almost 0 % error.
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Figure 4.1: Transient probabilities for ε= 1.00E-01 in the system failure model
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Figure 4.2: Transient probabilities for ε= 1.00E-03 in the system failure model

The computational runtime in the proxel-based method was calculated as the time

needed until the steady-state was reached. Figure 4.1 and Figure 4.2 show the rare

event transient probability until reaching the steady-state using the proxel-based

method for ε= 1.00E-01 and ε= 1.00E-03 respectively.

In all the experiment cases the time step size ∆t =0.1 and a probability cut-off of

1.00E-15 were used. All proxels with probability less than 1.00E-15 were discarded

from the simulation.

As shown in Figure 4.1, the simulation converges after simulation time t=10. While

in Figure 4.2, the simulation converges after simulation time t=9. It has been
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noticed that in all the ε values the system start converging after short simulation

time. That’s because that proxel-based method reaches the rare event in the same

simulation time in all ε values.

4.3 Single Queue Models

In this section, we discuss the results of three different proxel-based implementations

of single server queuing system models. The purpose of this section is to estimate a

rare event probability for a non-Markovian model using the proxel-based method.

In the first model, we validate our proxel-based code, where we estimate the rare

event probability in a Markovian single queue system, which has analytic results.

After the validation of our proxel code, we estimate using our proxel-based code the

rare event probability in two other models, which don’t have analytic results.

4.3.1 M/M/1 Model

In this section, we discuss the results obtained in the Markovian single server queuing

system model Figure 3.5. A simple single queue proxel-based implementation was

done to validate our proxel-based code, where analytic results were calculated using

Pr=ρ
L
2 [VARLE16].

We assume that customers arrive at the system with arrival rate λ=1 and leave the

system with service rate µ= 2. The traffic load ρ = 0.5. We calculated the rare

event probability for different thresholds L (20, 40, 60, 100) using the proxel-based

code, then we compared our result to the analytic results.

Table 4.3 shows the simulation results using the proxel-based method in the M/M/1

model. As seen in the table, we achieved an accuracy with 0 % error in computational

runtime less than 1 second for all of the different thresholds. Time step size used

equal to 0.1 in all the L cases.

Figure 4.3 shows the transient probability of having 20 customers at the system until

reaching the steady-state. As seen in the graph, the probability converges after

simulation time t= 55 with probability equal to 9.536E-07 with a computational

runtime of 0.06 seconds.

Different probability cut-off values were used in all of the above thresholds exper-

iments varying from 1.00E-15 to 1.00E-50. However, using a probability cut-off of

1.00E-50 for all of the threshold experiment will slightly affect the simulation compu-

tational runtime. For instance, using a probability cut-off of 1.0E-50 for estimating
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Figure 4.3: Transient probabilities for L=20 in the M/M/1 model

L Analytic result Proxel result Time (sec) % error
20 9.536E-7 9.536E-07 0.06 0 %
40 9.094E-13 9.094E-13 0.1 0 %
60 8.673E-19 8.673E-19 0.15 0 %
100 7.888E-31 7.888E-31 0.2 0 %

Table 4.3: Proxel-based results for M/M/1 model

that 20 customers in the system achieve the same accuracy with a computational

runtime of 0.12.

4.3.2 G/M/1 Model

In this model, we use proxel-based method to estimate the rare event probability in

a model, that doesn’t have any analytic results.

Assuming that customers arrive with normally distributed intervals time [1;0.4] and

the service is exponentially distributed with a rate of 3. In all the experiment cases

the time step size ∆t=0.05. The rare event is defined as the number of the customers

in the system are equal or greater than a certain threshold.

L Proxel result Time (sec)
5 2.66E-05 8
10 2.12E-10 34
15 1.68E-15 107
20 1.34E-20 227

Table 4.4: Proxel-based results for G/M/1 model
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Table 4.4 shows the simulation results for the proxel-method with different L thresh-

olds (5, 10, 15, 20). The table shows longer computational runtime compared to the

M/M/1 model, that’s due to the non-Markovian service in the model.

Figure 4.4 shows the transient probability of having 10 customers in the systems un-

til reaching the steady-state. As seen in the graph, the probability converges after

simulation time t= 15 with a probability of 2.66E-05.
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Figure 4.4: Transient probabilities for L=10 in G/M/1 model

The computational runtime in this experiment relies mainly on the probability cut-

off values. This means, using a small probability cut-off would increase the compu-

tational runtime of the simulation. Several probability cut-off values were tested.

For instance, estimating a probability of having 10 customers in the system using

a probability cut-off of 1.00E-30 would increase the computational runtime from 34

seconds to 175 seconds.

4.3.3 G/G/1 Model

This is another example, where we use our proxel-based method to estimate the rare

event probability in a model that doesn’t have any analytic results.

Let’s assume that customers arrive and leaves with normally distributed intervals

time [2;0.4] and [1.5;0.2] respectively. The rare event probability is defined as the

number of customers in the system are equal to or greater than a certain threshold

L (5, 10, 15, 20). In all the experiment cases, the time step size was ∆t=0.05.

Similar to the previous G/M/1 model, Table 4.5 shows the simulation results for

the proxel-method with different thresholds L values. As seen in the table, the
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L Proxel result Time (sec)
5 2.09E-13 11
10 5.84E-32 135
15 1.63E-50 360
20 4.55E-69 688

Table 4.5: Proxel-based results for G/G/1 model
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Figure 4.5: Transient probabilities for L=5 in the G/G/1 model

computational runtime is longer compared to the previous single queue models due

to the non-Markovian arrival and service distribution.

Moreover, the proxel-based method shows the ability to estimate a very small rare

event probability up to 5.55E-69 in a computational runtime of 688 seconds. Several

probability cut-off values were tested to obtain better accuracy and short runtime

in each of the L experiments.

Figure 4.5 shows the transient probability of having 5 customers in the systems

until reaching the steady-state. As seen in the graph, the probability converges

after simulation time t= 30 with a probability of 2.09E-13.

4.4 Tandem Queue Model

This section presents the result of the proxel-based implementation for a tandem

queue model. For comparison reasons, we adapted RESTART results from [VAVA99].

To be able to compare the RESTART results to our proxel-based method, we used

the same given numerical values in [VAVA99].

In this experiment, we focus our comparison on the accuracy of both simulation

approaches. That’s due to RESTART results were obtained using a Sun Ultra 5

workstation and our proxel-based implementation was run on a local PC.
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Let’s assume that customers arrive at the first queuing system with arrival rate λ=

1 and served with a service rate µ1= 2, after being served from the first queuing

system they enter another queuing system with service rate of µ2= 3.

The traffic load on the each queue ρ1 and ρ2 is 0.5 and 0.33 respectively. Several

probability cut-off values were tested to obtain better accuracy and short runtime

in each of the L experiments. Time step size used in all the discussed cases ∆t=0.1.

The analytic results below were obtained from [VAVA99].

1. q2 ≥ L

The rare event is defined as the number of the customers at the second queuing

system are greater or equal to a certain threshold. The thresholds values L

varies are 20, 40, and 60.

Table 4.6 and Table 4.7 show the rare event probability with both simulation

methods. Proxel-based method achieves a higher accuracy compared to the

RESTART method with short computational runtime.

L Analytic result RESTART result Time (sec) % error

20 2.87E-10 2.92E-10 34,2 1.7 %
40 8.22E-20 8.10E-20 900 1.4 %
60 2.36E-29 2.39E-29 18600 1.25 %

Table 4.6: RESTART results for the tandem queue model for q2 ≥ L [VAVA99]

L Analytic result Proxel result Time (sec) % error

20 2.87E-10 2.86E-10 2 0.3 %
40 8.22E-20 8.22E-20 35 0 %
60 2.36E-29 2.358E-29 231 0,08 %

Table 4.7: Proxel-based results for the tandem queue model for q2 ≥ L

Figure 4.6 shows the transient probability of having 20 customers at the second

queuing system until reaching the steady-state. The probability converges after

simulation t =50 with a probability of 2.87E-10.

2. (q1 + q2) ≥ L

The rare event is defined as the number of customers in both queuing systems

is greater than or equal to a certain threshold.
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Figure 4.6: Transient probabilities for L=20 in the tandem queue model

Table 4.8 and Table 4.9 shows the rare event probability with both simulation

methods, where the proxel-based method achieve accuracy of 0 error %.

L Analytic result RESTART result Time (sec) % error

20 1.90E-06 1.94E-06 4.2 2.1 %
60 1.73E-18 1.63E-18 52 6.13 %
100 1.58E-30 1.51E-30 161 4.4 %

Table 4.8: RESTART results for the tandem queue model for (q1+q2) ≥ L [VAVA99]

L Analytic result Proxel result Time (sec) % error

20 1.90E-06 1.90E-6 1 0 %
60 1.73E-18 1.73E-18 35 0 %
100 1.58E-30 1.57E-30 270 0.63 %

Table 4.9: Proxel-based results for the tandem queue model for (q1 + q2) ≥ L

Figure 4.7 shows the transient probability of having 20 customers in both

queuing systems until reaching the steady-state. The probability converges

after simulation t=50 with probability of 1.90E-06.
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Figure 4.7: Transient probabilities for L=20 in the tandem queue model

3. min(q1, q2) ≥ L

The rare event is defined as the minimum number of customers in one of the

queuing systems is greater than or equal to a certain threshold.

Table 4.10 and Table 4.11 shows the rare event probability using both simu-

lation methods. Again, the proxel-based method shows higher accuracy com-

pared to the RESTART method.

L Analytic result RESTART result Time (sec) % error

20 2.74E-16 2.92E-16 108 6.16 %
30 4.52E-24 4.56E-24 381 0.87 %
40 7.48E-32 7.10E-32 1050 5.35 %

Table 4.10: RESTART results for the tandem queue model for min(q1, q2) ≥ L
[VAVA99]

L Analytic result Proxel result Time (sec) % error

20 2.74E-16 2.73E-16 18 0.365 %
30 4.52E-24 4.52E-24 75 0 %
40 7.48E-32 7.48E-32 437 0 %

Table 4.11: Proxel-based results for the tandem queue model for min(q1, q2) ≥ L

Figure 4.8 shows the transient probability for threshold L= 20 customers until reach-

ing the steady-state. The probability converges after simulation t=78 with proba-

bility of 2.74E-16.
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Figure 4.8: Transient probabilities for L=20 in the tandem queue model

As an overall summary of all of the above results, proxel-based simulation has higher

accuracy compared to the RESTART method. Several probability cut-off values were

used in each of the different thresholds values, that’s to achieve short computational

runtime and higher accuracy.

4.5 Effect of Time step

Time step size has an important role in the proxel-based method. The smaller the

time step size the more accurate the simulation results. However, smaller time step

would as well increase the simulation computational runtime. Therefore, time step

size ∆t should be selected carefully, where it is recommended to select a time step

size smaller than the globally acceptable time step of the system as explained in

Chapter 2.

Several time step sizes were tested in the evaluation of all the above models to

achieve higher accuracy and short simulation runtime.

For explanation purpose, we use the system failure model with failure rate ε= 1.00E-

02 in this section to illustrate the effect of the time step size.

Figure 4.9 shows the rare event probability using the time step ∆t = 0.4, where

the probability converge only after several time steps with 1% error with simulation

runtime of 0.01 seconds. While, using a smaller time step such as ∆t = 0.1 (see

Figure 4.10) has 0 % error and simulation runtime of 0.04 seconds with a longer

time to converge simulation time to converge.
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Figure 4.9: Transient probabilities for ε= 1.00E-02 using ∆t=0.4 in the system
failure model
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Figure 4.10: Transient probabilities for ε= 1.00E-02 using ∆t=0.1 in the system
failure model

4.6 Effect of Probability Cut-off

It has been noticed that probability pruning in the rare event is an important factor

to avoid long simulation runtime and to achieve better accuracy.

To illustrate the importance of the probability cut-off let’s consider the system failure

and tandem queue models.
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• System failure model:

probability cut-off =1.00E-10
ε Analytic result Proxel result Time (sec) % error
1.00E-01 8.9645E-03 8.9644E-3 0.07 0.001116%
2.00E-02 7.8397E-05 7.8393E-5 0.03 0.0051%
1.00E-02 9.9000E-06 9.89702E-6 0.03 0.030%
2.00E-03 7.9840E-08 7.9800E-8 0.03 0.05013 %
1.00E-03 9.9900E-09 9.8116E-09 0.03 1.818 %

probability cut-off =1.00E-15
ε Analytic result Proxel result Time (sec) % error
1.00E-01 8.9645E-03 8.9645E-3 0.1 0 %
2.00E-02 7.8397E-05 7.8397E-5 0.04 0 %
1.00E-02 9.9000E-06 9.8999E-6 0.04 0.001 %
2.00E-03 7.9840E-08 7.9839E-8 0.04 0.001 %
1.00E-03 9.9900E-09 9.989E-09 0.04 0.01 %

Table 4.12: Proxel-based results for the system failure model using probability cut-
off 1.00E-10 and 1.00E-15 respectively

We perform one more run for the proxel-based code of the system failure

model, but this time we used a probability cut-off equal to 1.00E-10. As

seen in Table 4.12 using probability cut-off close to the desired probability

did not make the accuracy too much worse. Another point to realize, the

computational time was slightly decreased. For instance, estimating the rare

event probability with failure rate ε=1.00E-03 with a probability cut-off of

1.00E-10 increased the % error to 1.818% and reduced the simulation runtime

to 0.03 seconds.

• Tandem queue:

We decerased the probability cut-off value from 1.0e-15 to 1.0e-35 to estimate

the rare event probability of 20 customers at the second queuing system (q2 ≥
20), and as a result, we achieved 0 % error, but a longer computational runtime

of 90 seconds instead of 2 seconds.

Another example is to increase the probability cut-off value. We increased the

probability cut-off from 1.00E-27 to 1.00E-23 to estimate the probability for

q2 ≥ 40, and as a result, we achieved 3.28% error instead of 0 %, with a shorter

computational runtime of 18 seconds instead of 35 seconds. Figure 4.11 shows

the transient probabilities for q2 ≥ 40 using different probability cut-off values,
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whereas seen in the figure that using a probability cut-off from 1.00E-27 has

a higher accuracy.
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Figure 4.11: Transient probabilities for q2 ≥ 40 in the tandem queue model using
different probability cut-off values

In this section, we show the effect of the probability cut-off value in both of the

system failure and tandem queue model. The more accurate the selection of the

probability cut-off value the higher the accuracy and faster simulation results.

4.7 Summary and Discussion

In this chapter, we compared the proxel-based method results with other results

obtained using the RESTART method in reliability and queuing systems models. In

addition to the comparison, we validate our proxel-based code with M/M/1 model

analytic results. Then, we showed that proxel-based method is efficient to analyze

the rare event in non-Markovian single server queuing system models. Furthermore,

we showed the effect of the time step size and the probability cut-off in the estimating

a rare event probability.

It turned out that some models such as non-Markovian models or models with larger

state space require more careful decision in the selection of the probability cut-off

value. For instance, in the system failure model, the probability cut-off value was

the same for all the different ε values while in the queuing systems different prob-

ability cut-off values were selected for each of the threshold cases. The smaller the

probability cut-off values, the more memory required while, the higher probability

cut-off values, the less accurate results.
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Analyzing rare event models is still considered as a simulation limitation for discrete

event simulation. The common goal of many of the rare event simulation approaches

is to increase the rare event occurrence during the simulation. In this chapter, we

provide a brief summary of the thesis, followed by the conclusion, and the future

work.

5.1 Summary

In the first place, we reviewed several simulation methods used to analyze mod-

els containing rare events. Among the reviewed methods: Importance Sampling

and Importance Splitting/RESTART. We discussed both of their advantages and

disadvantages. Then, we used the proxel-based method as a rare event simulation

method and suggested that the proxel-based approach is competitive approach to

the existing rare events methods due to that proxel-based method gives all states in

the model the same importance.

Also, we discussed the existing rare event methods mentioned in the thesis and

showed that RESTART method has more advantages over the other existing rare

event simulation methods. Then, we presented several commonly studied rare event

models. The studied models are categorized into two groups: Reliability model and

queuing systems models. During the implementation, we faced some challenges to

achieve higher accuracy and to keep a short computational runtime.

Lastly, we compared all the results obtained with both methods. Besides that, we

showed the effects of both of time step size and probability cut-off on the computa-

tional runtime and the accuracy of the simulation.
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5.2 Conclusion

The primary goal of the thesis is to show whether the proxel-based method is a

competitive approach to RESTART method. RESTART method has often been

used for rare event simulation, where it has many successful publications.

In this work, we use the proxel-based method as a rare event simulation approach.

Several rare event models were studied, and the results obtained using the proxel-

based method were compared to similar results obtained using RESTART method.

As a summary of this work, the proxel-based method showed to be a competitive

approach to the RESTART method. The results of this work can be listed as follows:

• Proxel-based method achieved higher accuracy and shorter computational run-

time compared to the RESTART method in the system failure model. More-

over, the proxel-based method achieved higher accuracy as well in the in the

tandem queue model compared to the RESTART.

• Proxel-based method overcomes non-Markovian rare event models and can es-

timate rare event probability in such models in a short computational runtime,

which depends on the conditional probability distribution in a model.

• Probability cut-off and time step size play an essential factor in the simulation

of the rare event. In that matter, a more precise selection of both probability

cut-off and time step size are required to achieve accurate estimation in a short

simulation runtime.

The reason behind the efficiency of the proxel-based method is that proxel-based

method gives all events in the systems the same importance. However, the proxel-

based method has one known disadvantage due to its deterministic nature is the

state space explosions and the memory complexity.

In this thesis, we discussed the effect of time step size and the probability cut-off

value in the proxel-based method. Both time step size and the probability cut-off

value have an impact on the accuracy and the simulation runtime especially when a

probability of interest is rare event probability. This means the performance of this

method depends on the value selection of those parameters.
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5.3 Future Work

This thesis can be extended by developing a software modeling tool with a graphical

interface. This software modeling tool can make the proxel-based easier to be applied

to various models, where no coding would be required.

Moreover, the proxel-based method is still needed to be tested with a real-world

problems. In this thesis, the proxel-based method was tested with often used research

academic models. However, we hope that the proxel-based approach is efficient to

estimate rare event probability in various industry fields.
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