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Abstract

Vision based hand gesture recognition is getting increasingly popular due to its intuitive
and effective interaction between man and machines. However, there are not sufficient
means of support for deployment, research and execution for these tasks. In this thesis,
we present 3-D hand gesture recognition system to recognize, especially when dealing
with gestures of similar shape but different temporal pattern using Hidden Markov
Models (HMMs). This is facilitated by recording gestures using Microsoft Kinect sensor.
Recorded gestures include different shapes but with varying temporal patterns. We train
the Hidden Markov Model (HMM) models based on feature vectors extracted from the
recorded gestures. Training and classification process was implemented using machine
learning framework Accord.Net. We analyze the feasibility of HMMs in detecting and
recognizing different gestures in the classification process. We implemented five-fold
cross validation strategy to determine accuracy rates of different gestures for different
training parameters. We also analyzed the results of classification process for gestures
drawn by specific users. Our results suggests that our algorithm can achieve an average
best of 63.6% in recognizing gestures with different temporal patterns and an average
best of 86.8% in recognizing gestures drawn by a specific user. This shows that within
limits, HMMs can be applied to distinguishing user gestures with similar shape and
different temporal patterns.

Keywords: 3-D gesture recognition, Hidden Markov Models, Kinect, Accord.Net
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1. Introduction

1.1 Motivation
Hand gesture recognition research in 3D space has been gaining importance widely
all over the world. Apart from ordinary uses in day-to-day life, gesture recognition is
slowly gaining entry into automotive, medical systems, communication systems, gaming,
education, mobile devices, virtual reality, sign language etc. Previous works on gesture
recognition can be divided into two parts glove based and vision based approaches.
Glove based approach is where a user has to wear a glove attached with sensors and
cables to detect specific movement of hand. The output of the sensors are then given
as an input to a computer for further processing. Evidently, glove based approach is
inconvenient and bulky to carry. However, vision based approach is gaining momentum
because of the reason that an user doesn’t require to carry bulky devices but instead
the gestures can be performed in a much more natural environment. These movements
by the user are then recorded using depth cameras.

As discussed previously, vision based approach needs cameras to record human move-
ments. We can use any ordinary web camera to record video sequences and then apply
gesture recognition techniques. However, an ordinary camera can only work on a 2D
space. To work in 3D space we would need two ordinary web cameras and complex
computer vision algorithms. With recent developments in camera technologies we have
precise body motion sensing input devices like Microsoft Kinect and Intel Real Sense.
Microsoft Kinect incorporates a RGB color camera, depth sensor and a microphone
for voice recognition. Microsoft Kinect has been one of the most widely used camera
for gesture recognition[ISTC14, SFS+14] because of the fact that it allows users to act
freely as they would in real-life. Its low-cost and depth sensor capable of capturing
videos in real time 3D under any ambient lighting made Microsoft Kinect an obvious
choice for our experiments.

Focusing on vision based methods, captured video data using Microsoft Kinect are
used for interaction and hand gestures are one of the most common methods of human
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interaction. Gestures can be anything as simple as a hand wave or drawing complex
shapes. For better understanding, hand gestures are classified into different categories:
1) static or dynamic and 2) isolated or continuous

There has been lot of papers for recognizing simple static and dynamic gestures. For
instance, a simple static gestures are like calculating angle between thumb and index
finger and simple dynamic gestures are like drawing a circle, right swipe, left swipe
etc. Again, gestures can be further classified into two parts, isolated and continuous
gestures. For an instance, drawing a number 32 as a gesture would be considered as a
continuous gesture because there exist a connecting vector from the number three to
the number two which must be discarded, to be nominated as a meaningful gesture.
Whereas, drawing a circle or a fast circle would be considered as an isolated gesture.
Here in this paper we focus only on isolated gestures.

The above mentioned examples share a common governing principle. Machine learning
and computer vision algorithms act as the driving force in gesture recognition tech-
niques. Some of the most commonly used algorithms in gesture recognition are Hidden
Markov Models (HMMs), Dynamic Time Warping (DTW), Support Vector Machines
(SVM). HMMs using Kinect has been one of the most widely researched combination
[PSF, XL12, ISTC14]. HMMs are statistical method which creates models based on
provided parameters from a stochastic process emerging through time. A probabilistic
likelihood of any other sequence being generated by the model can be calculated using
a trained model. HMMs are discussed in detail under Section 2.2.

However, there has been limited or not much research to define different temporal
aspects of different gestures using HMMs. In other words, is it possible for HMMs to
recognize a gesture with different velocities evolving with time? A research question
to answer would be to test how efficient is HMMs in recognizing specific gestures with
different temporal behaviors and evaluate its success rate.

1.2 Goal of the Thesis

The goal of this thesis is to evaluate how feasible it is to use HMMs to perform gesture
recognition after recording gestures with different temporal patterns using Microsoft
Kinect skeletal tracking. HMMs will be used as training and classification algorithm
for the recorded gestures. We will measure the success rate of HMMs for each gesture.
Some research questions to answer would be as follows:

⇒ Are HMMs capable of recognizing gestures with different temporal patterns?

⇒ How will training parameters affect the recognition results?

1.3 Project Description

Contributions made in this thesis are focused on defining and recognizing gestures with
different temporal patterns for a defined gesture set using HMMs and Kinect. HMMs
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has been the most widely used method for modeling gesture and speech recognitions.
Precisely, gesture detection and recognition is computer vision and pattern recognition
problem. We propose a method to define and recognize gesture patterns performed
with different velocities in real time by training HMMs. Our main motivation is, can
HMMs be able to differentiate between a set of gestures with varying velocities?

To achieve the goals as described in the Section 1.2 specific tasks were performed.
Before recording the gestures, Microsoft Kinect was setup for skeletal tracking of 20
different joints of the user. Specifically, the right hand joint was tracked for right hand
coordinates. Using the Kinect, 10 different types of gestures were performed by five
different users (including two females) which then was subsequently used to build a
gesture set. Local database was used to store the hand coordinates along with unique
shapeID and userID of gestures. The database structure is discussed in detail under
Section 4.2.

Subsequently, the recorded hand coordinates were converted into feature vectors for
training HMMs as described in the Section 3.4. For training the HMMs, a machine
learning framework Accord.Net was used. The framework allows user to use the built-
in libraries and functions for building HMMs.

To explore the feasibility of HMMs, experiments were designed and conducted around
the idea of recognizing gestures with different temporal aspects and how are they af-
fected with the change in training parameters. For classification of gestures, two cross-
validation experiments were carried out as discussed in Section 4.2. Firstly, by dividing
the gesture set into 80% as training data and 20% as testing data. Average accuracy
rate was then calculated for the whole testing data. Secondly, the whole gesture set
was again divided into 90% and 10% and the average accuracy rate for the testing data
was calculated. To learn how the training parameters affect the training and classifica-
tion performance of HMMs, cross-validation experiments were conducted with different
number of states and topologies as described in Section 4.2.

HMMs are known to perform well with certain gestures like drawing shapes, numbers
or swiping [Hu14, YSBS01]. Velocity as a training parameter would change drastically,
depending on how fast a gesture is performed. Is it possible to recognize two similar
gestures but with different speeds? For example, drawing a circle in air and another
circle with different velocity are considered to be two different gestures. But, is it
possible for HMMs to recognize them as two different gestures? Keeping in mind that
both these gestures have the same training parameters. So, how feasible are HMMs to
recognize different temporal patterns of gestures with same training parameters would
be a research question to explore.

1.4 Structure of the Thesis

Before representing the effort in this thesis, Chapter 2 gives an overview of previous
and related works on hand gesture recognitions using HMMs. This elucidation includes
discussion on hand gesture recognition problems, types of gestures, definition of HMMs,
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types of HMMs, limitations of using HMMs and skeletal tracking using Microsoft Kinect.
Chapter 3 describes implementation of algorithm, training process overview of HMMs
for recognizing gestures, technology setup for implementation, definition of gestures
and gesture set, feature extraction of hand, training of HMMs using feature vectors and
classification. Chapter 4 presents the experiment setup, database structure, algorithms,
experiment results and their evaluation. Chapter 5 summarizes our thesis. It includes
discussion about evaluation of goals, limitations in the thesis and benefits including
future work extensions.



2. Related Work

This chapter gives an overview of concepts that go through the whole thesis. In this
section we discuss about how a basic hand gesture recognition system works and state
of the art research papers involving HMMs. Gestures have been the most preferred
way of interaction for humans. We talk about how gestures are classified into different
categories. Based on several research papers, HMMs are one of the most popular
training and classification algorithms for hand gesture recognition where time is not
a constraint. Here we discuss about how HMMs are defined and classified depending
on probability distributions and its underlying markov processes. A brief overview of
how HMMs are used in hand gesture recognition and their applications. Even though
HMMs are the most preferred algorithms for speech and gesture recognition, it itself
has lots of limitations. In the end, we discuss about how skeletal tracking works in
Microsoft Kinect.

2.1 Hand Gesture Recognition System
Hand gestures are natural way of human communication. Basically, hand gesture recog-
nition system can be modularized into 3 different sections as shown in Figure 2.1.
Firstly, since the entry of Microsoft Kinect there has been number of proposed extrac-
tion methods for not only hand gestures but lot of other applications like foot gestures,
face recognition, 3D tracking and so on. Segmentation and tracking a moving hand
is a complex process. For example, [EAHM11] explains how they used 3D depth data
and color information using stereo color images to segment and track moving hand.
For robust segmentation of skin colored regions (Y,Cb, Cr) color space was used. A
different kind of approach for extraction was used here in [KF11] where the authors
have mapped a circular plate on the regions of users hand and the centroid of the circle
using skin color for hand detection. Applying, previous hand detection method, hand
tracking was done in fixed window search region. Boundary of the hand and centroid
point of hand region was calculated. Iteratively, motion trajectory of the gesture path
was obtained by collecting the hand centroid points.
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Figure 2.1: Gesture Recognition Model

Secondly, feature extraction is critical step in the system. Once the hand detection and
tracking is done, we need features of the tracked hand for further computation. Good
feature selection plays a significant role in performance of gesture recognition. In the
same paper [EAHM11] chose to use basic features: location, orientation and velocity.
They achieved an overall average accuracy rate of around 97% for their experiment. We
may choose to describe the object using their features in frequency domain, instead of
temporal or spatial domain. [Che03] used Fourier Descriptors (FD) and motion vectors
as features for HMMs for their experiment.

Static gestures can be defined as orientation and shape of a hand in a spatial domain
for a specific duration of time without any movement. These gestures don’t change
with time. For instance, joining forefinger and thumb for a ”ok” pose. Whereas, if there
is certain movement like waving a hand represents a dynamic gesture and is a time
varying signal.

There has been work done on differentiating static and dynamic gestures automatically.
For example, [RWA+07] presented a automatic recognition model using HMMs to dif-
ferentiate static and dynamic gestures using position of hand and angle between the
fingers. They used infrared tracking sensors on the fingers of the user to receive position
and angle parameters. Static gesture like pointing do not vary with time. So, the angles
between the fingers stay the same but the position might vary. For a dynamic gesture
like clapping position and angles vary with time. These concluded gestures are then
applied to compare execution times or interaction intuitiveness in real environment, a
connected Augmented Reality (AR) application and gesture recognition system.

2.2 Definition of Hidden Markov Models

Hidden Markov Model (usually denoted by λ) is a probabilistic model which carry dual
layer stochastic processes. First layer is the first-order Markov process, represented
by states, transition probability matrices and observations. As we see, HMMs is built
on the foundation of Markov process, so it is bound to follow Markov property, which
states, the conditional probability of the future states only depends on the present
state and not on the states preceding it. Second layer is the set of output probabilities
for each state. For example, [SFS+14] explains, there is a robot which follows simple
instructions by an user performing 3 gestures one after another. They are: 1) Wave; 2)
Stop; and 3) Come .
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Markov process analysis for the above mentioned example can predict the probability
of the next gesture being Come given that the current gesture is Stop. Mathematically,
this Markov analysis can be modeled as shown in Equation 2.1

P (Xn|Xn−1, Xn−2, ...X1) = P (Xn|Xn−1) (2.1)

Equation 2.1 shows that the probability of an observation Xn at time n depends only
on Xn−1 at time n− 1.

Above example, presents us with a model following Markov properties. A HMM is a
mathematical structure which obeys Markov properties but in contrast to the presented
example, the user can only see the sequence of observations and the states are hidden
in this case. This complements the term ”hidden” in the Markov process. Graphically,
HMMs can be modeled as shown in Figure 2.2.

S1 S2

a11
a12

a22

a21

V1
V2

V3
b12

b11 b13

V1
V2

V3
b22

b21 b23

Figure 2.2: A Simple HMM Model with Two States

According to [Ern89], mathematically, a HMM can be expressed as shown in Equa-
tion 2.2

λ = (S, V,A,B,Π) (2.2)

and can be described as follows:
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• a sequence of observations O = {O1, O2, ...., OT}, where time t = 1, 2....., T ;

• S set of N hidden states {S1, S2, ...., SN};

• V set of M discrete observation symbols {V1, V2, ...., VM};

• transition matrix A = {aij} where aij is the transition probability from state Si

at time t to state Sj at time t+ 1;

• matrix B = {bjk} is the observation symbol probability, where bjk is probability
of generating symbol Vk from state Sj;

• Π is the initial probability vector of the states Π = πj, j = 1, 2, ..., N, where πj =
P (sj) at t = 0.

For easy understanding, a compact mathematical notation λ = (A,B,Π) can also be
used which includes probabilistic parameters.

2.3 HMMs for Hand Gesture Recognition
Lots of research and development has been done on gesture recognition using human
skeletal movement and depth cameras like Microsoft Kinect and Intel RealSense. Here
are some reference articles to the state of the art algorithms and models for gesture
recognition using HMMs.

Modeling a HMM has three basic problems: evaluation, decoding and training. Training
a HMM requires feature vectors as an input for model parameter estimation. Baum-
Welch algorithm is most widely used for solving training problem. [EAHM11] used
combined features like location, orientation and velocity of the hand to train HMMs.
The authors used HMMs to recognize alphabet characters (A−Z) and numbers (0−9)
in real time. In another approach [FLO14] used the skeleton data (X − Y − Z) of the
hand and elbow from Kinect and calculated the angle between them in both (X − Y )
and (Y − Z) plane. These 2 angles were used as the feature vector inputs for HMMs
training. HMMs were used to detect and recognize 6 different gestures like follow me,
wait and so on for a robotic task.

[FLO14] suggested Human Robot Interaction (HRI) for office tasks using HMMs and
Kinect. They proposed HMMs based on skeletal tracking using X-Y-Z coordinates.
Here they managed to convert skeleton data into symbol sequence and subsequently
processing it through gesture recognition engine till result of gesture recognition. They
used to 6 different types of gestures like Follow me, Move, Standby, Wait, Transport
and Bye-Bye.

[EAHM08] proposed automatic system that recognizes isolated and continuous gestures
for Arabic Numbers (0-9) in real time using different Hidden Markov models topologies.
They used hand motion trajectory to determine the angle between each subsequent
trajectory and then dividing the resultant angle into a code word. 18 different Code
words are defined for different values of resultant angle which are used as a sequence
for training HMM parameters.
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2.4 Discrete and Continuous HMMs
According to [Ern89], HMMs based on the probability density continuity of state ob-
servations can be divided into 2 types: Continuous Hidden Markov Model (CHMM)
and Discrete Hidden Markov Model (DHMM). In the DHMM, the raw input data is
quantized into codewords using vector quantization for each observation. On the other
hand, a CHMM models the observations using continuous probability density functions
without vector quantization. As described here [Tan95], the observations of DHMM are
discrete symbols that correspond to a vector quantized codebook. Figure 2.3 shows a
HMM with two output symbols; likelihood of producing ”0” symbol is more likely than
a ”1” for the state S1 and vice-versa for the state S2.

Figure 2.3: Discrete HMM

In CHMM, the probability of observations are represented as continuous data. Fig-
ure 2.4 shows a 2-state HMM where each state has a 1-dimensional probability density
function; state S1 is still more likely to produce symbol ”0” than a ”1”, but CHMM
doesn’t require any quantization for the observations. Here in this thesis we deal with
CHMM since our density distribution is continuous.

Figure 2.4: Continuous HMM
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2.5 Limitations of Hidden Markov Models

HMMs work exceptionally well in temporal classification problems, provided we have a
large training dataset. Training a large dataset is both expensive and time consuming.
Main limitation of Continuous HMMs algorithm (detailed discussion in Section 2.4)
is that the accuracy and speed of the classifier can vary greatly with the change in
parameters like number of states, Gaussian distribution etc. Some of the most common
implementation issues in HMMs are suitably explained here in [Cha16]. They explained
that while using multiple observation sequences, the left-right model of HMM, a state
transition occurs in a sequential manner. This limits re-estimation of model parameters
when we have only single observation sequence because until a transition is made to next
state, model only allows a limited number of observations for any state. That is why
we need multiple sequences to generate sufficient data for model parameter estimation.

Choosing initial estimates of HMM parameters is a critical issue. Right choice of ini-
tial parameters estimation will lead to global maximum from local maximum of the
likelihood function. In yet another revolutionary paper on HMMs, the author [Rab89]
points out that in most of the cases a random estimate of π and A are suitable enough
to generate parameter re-estimates. For B good estimation is important for continuous
distributions.

Topology selection for a HMM model is again an implementation issue. Selection of
different available topologies like ergodic, forward or some other will lead to different
levels of accuracies and speeds. Choosing a different model size, number of states,
classes or discrete and continuous observation symbols generate varying results. So,
there is no direct or straight-forward way to achieve satisfactory results. The selection
of parameters depends highly on the application being modeled.

2.6 Skeleton Tracking in Kinect

Gesture recognition using skeletal data from Kinect is a challenging task. For instance,
a wave gesture detection using skeleton tracking can be easily done, by writing a small
piece of code. However, skeleton tracking using Kinect is not fully reliable because
sometimes it can lose track of joints when occluded by environmental issues like chairs
or overlapping of joints. Defining a proper start and end of a gesture using skeletal
tracking is challenging. [EAHM11] implemented automatic segmentation and tracking
algorithm using skin color detection for defining start and end of gestures. Using six
different joints returned by Kinect sensor [CATA13] concatenated all the 3D coordinates
for six joints to generate feature vectors for a gesture sequence which would act as an
input for DTW. Noisy frames at the starting and ending of gestures are inevitable.
We have considered to train our HMM models because these noisy frames are just the
natural way of human-computer interaction.

In the past, lot of techniques employing Kinect has been proposed for hand gesture
recognition. Detection and segmentation of hand is a crucial part where segregation
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Figure 2.5: A Model Showing 20 Different Joints Tracked Using Kinect v1

is carried out to eliminate image background except for the hand to be tracked and
recognized subsequently.

Using a depth sensor and a infrared sensor, Kinect has ability to track different body-
joints as described here in Microsoft research [SFC+13]. Kinect sensor returns the raw
depth data using depth sensor and then process each pixel to check for human skeleton.

Here in this paper [KSS] the authors have described how skeletal tracking works and
what are the challenges faced in real-time pose recognition of human skeleton. In this
thesis, we have used skeleton tracking using Kinect for Windows Software Development
Kit (SDK). Windows SDK for Kinect provides us with a bunch of Application Pro-
gramming Interfaces (APIs) which allow us to track specific joints in a human skeleton.
Figure 2.5 shows 20 different joints that can be tracked using Kinect v1.
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3. Implementation

This chapter represents our approach and tasks to achieve our defined goals. We dis-
cuss about our flow of execution, technology used, definition of gestures, extraction of
features, training and classification process of gestures.

3.1 Training and Process Overview

Figure 3.1 represents the flow of execution for the recognition process. Video frames are
captured using Kinect camera. These captured frames are then processed one by one
for extraction of significant features of the hand like orientation of the hand and length
of the vector. The extracted features act as an input for HMM training. The training
algorithm (Baum-Welch) creates a HMM model for each gesture and calculates the
probabilities for each HMM models using Forward algorithm. When a test observation
is given for recognition it generates the maximum likelihood probability that matches
the trained HMM model and provides us with an output.

3.2 Technology

Visual based gesture recognition requires a camera to capture and record video se-
quences. In this thesis, we used Microsoft Kinect to accomplish skeletal tracking of the
users. For training HMM parameters with Baum-Welch algorithm, Accord.Net frame-
work is used. Accord.Net framework is a .NET machine learning framework completely
written in C#. The framework provides easy classification tools like HMM, SVM etc.
Using the framework a Hidden Markov classifier was instantiated with initial param-
eters like number of states set to 2, number of gesture classes, forward topology and
distribution density of feature vectors α, β and ~v.
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Figure 3.1: Flow Chart for Recognition Model
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3.3 Gesture Definition

Giving commands to your infotainment system in your car through only computer
vision techniques without sounds or any other media is comparable to making gestures
to your friend. In order to do a feasibility study involving HMMs, our system requires
body language which varies with time. There are many kinds of gestures which can
be represented by the hand motion as discussed here in Section 2.1. Our main goal is
mainly to recognize the dynamic hand gesture with different temporal patterns from
continuous hand motion in real-time, and implement on interaction between human and
machine. In this thesis, we describe 10 types of gestures using right hand as shown in
the Table 3.1. The first column in the Table 3.1 is the unique ShapeID assigned to each
of the 10 gestures and is used for training & classification of HMMs. The gesture set
was chosen so as to keep a mixture of both normal and gestures with different velocities.
The gestures shown in Table 3.1 are named accordingly for easy understanding.

Shape ID Gesture

0 Vertical Line

1 Horizontal Line

2 Circle

3 Square

4 Triangle

5 Circle Fast

6 Circle Slow Fast

7 Circle Fast Slow

8 Triangle Fast

9 Diagonal

Table 3.1: Defined Gesture Set

Figure 3.2 shows different gesture patterns we recorded for our database. The green
circle represents the starting point of a gesture, single arrow represents normal speed
and double arrows denote faster speed.

For instance, the gesture Triangle Fast is represented as a triangle with double arrows
on its sides, showing the gesture is performed faster than normal speed.
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Figure 3.2: 10 Different Gestures with Varying Temporal Patterns

3.4 Feature Extraction

Good feature selection plays an important role in hand gesture recognition performance.
These features are derived in cartesian coordinate space directly from the gesture frames.
Skeleton tracking using Kinect SDK, provides us with x, y, z coordinates i.e. the position
of the hand in 3D space. Initially, x, y, z coordinates were selected to be the features of
the hand for HMM training. But the training performance was very poor to be taken
into consideration. As shown in the Figure 3.3 the coordinate system of Kinect, x, y
and z values are measured in the meters. For example, hand position (0.3,−0.65, 1)
would suggest the hand is 1m away in z-direction from Kinect sensor, 0.3m and −0.65m
in x-direction and y-direction respectively.

Figure 3.3: Kinect Coordinate System

Due to the reason, that the HMM training with Cartesian coordinates performed poorly,
we opted to new feature vectors like orientation of hand in X − Y and Z − Y plane.
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Previous research [EAHM08, LLKD] have shown that orientation as a feature has been
the best for accuracy results. So, the orientation is calculated between 2 consecutive
points in the gesture path. Firstly, the change in x, y and z was calculated as shown
below.

Change in x,y,z coordinates:

δx = xt+1 − xt
δy = yt+1 − yt

δz = zt+1 − zt (3.1)

t = 1, 2, .....T − 1

Feature vector α is calculated as the angle between x and z axes in radians. α was
calculated in radians in order to avoid problem of division by zero and the ambiguity if
the angle in degrees is returned as 0◦ or 360◦. arctan 2(x, z) will return a valid answer
as long as x is not zero.

α = arctan 2(δx, δz) (3.2)

Angle β is the angle (in radians) between y-axis and the length of the vector ~u in
xz-direction.

~u =
√
δ2x + δ2z (3.3)

β = arctan 2(δy, ~u) (3.4)

α and β were used to train HMMs but the results were considered to be too noisy.
Reason for this noisy training probabilities is because of different temporal behaviors
with same patterns. For example, drawing a circle in the air will have almost similar α,
β angles as drawing another circle with different speed. Since we are dealing with ges-
tures with different speeds, we incorporated another feature vector ~v into our training.
Velocity as a feature was calculated as shown below:

~v =
√
δ2x + δ2y + δ2z (3.5)

In this thesis, feature vectors α, β and ~v were finally considered as training parameters
for HMMs.
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3.5 Training

Training HMMs for a large set of database can be very complex. To train HMM pa-
rameters, each gesture is manifested with a corresponding model. Feasibility of HMMs
might vary with different set of model parameters, so here we have tried using different
model parameters accordingly to achieve maximum likelihood for given training data.
There is no analytic solution to this problem so far. However, re-estimation of model
parameters can be achieved using Baum-Welch algorithm. This algorithm iterates over
the model parameters to achieve the local maximum for the given training data.

Design of topology in HMMs includes a set of states S1, ...., SN and how they are
connected to each other. For example, a forward topology represents that the state
transitions only occur in forward direction; in other words, it is also known as Left-
Right Banded (LRB) topology. Research[FLO14, EAHM08] have suggested LRB is
the best suited topology for hand gesture recognition. As shown in the Figure 3.4, 4
connected states could make a transition to the state itself or its subsequent state only.

S1 S2 S3 S4 S5

Figure 3.4: Forward Topology Representation

In order to test out the feasibility of HMMs, a fully-connected topology(ergodic) and
forward topology was used. A fully-connected or ergodic topology is a set of connected
states which allows non-constrained transition to any state starting from a specific state.

Figure 3.5 shows 4 different connected states allowing transition to any other state or
to the state itself.

To better understand the behavior of HMMs, training was conducted with different
parameters for each experiment. Parameters considered for the experiments are number
of states and topology of the model. Using the framework Accord.Net, two different
classifiers were used to train the HMMs. First classifier was used to train only to classify
different shapes; it was trained with four different states and two topologies and the
outputs were plotted as graphs in Section 4.4. Likewise, a second classifier was trained
using same methods, but this classifier was used classify gestures drawn by a specific
user. In other words, recognizing how many times a gesture drawn by a specific user is
recognized correctly. The experiment details and results are discussed in the Section 4.5



3.6. Classification Process 19

S1 S2

S3S4

Figure 3.5: Ergodic Topology Representation

3.6 Classification Process

Gesture recognition using video sequences can be considered as a pattern recognition
problem. While training the HMM is an elaborate process, recognition process is much
simpler. For classification, forward algorithm is used. Given an observation, all the
HMMs generate probabilities but the highest probability generating model best de-
scribes the observation sequence. The HMM model with the highest probability is
chosen as the likely generator of the observation, resulting in a label. Accord.Net pro-
vides necessary functions for probability calculation and classification of gestures.
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4. Experiments and Evaluation

To understand the behavior of HMMs, two different experiments were performed.
This section describes about gesture recording using Graphical User Interface (GUI),
database structure and interpretation of the test results. For all the following exper-
iments, cross-validation strategy was used. These test results include interpretation
of how effective are HMMs in recognizing gestures and in recognizing specific gesture
drawn by a specific user. We discuss about average accuracy rates and confusion ma-
trices.

4.1 Graphical User Interface

The experiments are conducted on a Windows 10 machine powered by i7 2.6 GHz
processor. The whole code is written in C# using Windows Forms and Microsoft Visual
Studio 2015. For better interaction, a GUI was designed to assist users. Initially, for
recording gestures, we used 3-second delay rule to mark start of gestures. To start
recording gestures, the user has to keep the right hand static for 3 seconds and then the
GUI prompts the user recording started. Once the recording has been started, the user
starts drawing a gesture until the end, where the user has to keep the right hand static
for a brief moment, till the GUI prompts recording stopped. Algorithm was designed
in such a way that, when the recording is underway it checks for standard deviation
in right hand coordinates for the last 60 frames. This standard deviation is calculated
for each and every frame until it hits a certain threshold, thereby, marking the end of
gesture.

Recording 10 different types of gestures was a challenge since the users have to follow
the 3-second rule to initiate recording. It was a cumbersome task. Later, different
choices of action were made available to user through the GUI interface, namely:

1. Recording gestures using buttons and subsequently storing them into the database.
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The GUI was developed in C# for better interaction with the Kinect. Kinect starts
tracking the skeleton the moment it detects a user and is displayed on the screen. When
the GUI starts, it displays options for the user as shown in the Figure 4.1 below:

• Start: Start recording gesture.

• Stop: Stop recording gesture.

• UserID: User can select specific user name from the drop down list.

• GestureID: Option to select which gesture is being recorded.

• Create Markov Classifier: A button for training the hidden markov classifier.

Figure 4.1: Graphical User Interface

4.2 Database

For the purpose of training and testing of data, a local Structured Query Language
(SQL) server 2016 database was setup. The resolution of recorded sequences was 640 x
480 at 30 frames per second. We have recorded 10 different shapes with varying temporal
patterns. 5 different volunteers including 2 females have recorded 20 sequences each for
a single gesture. 100 sequences each for a gesture was recorded with varying number
of frames in each sequence. This is to keep randomness in the experiment. All the
performed gestures were recorded with clock-wise orientation. In total, we recorded
63,636 frames for 1000 sequences in our database. The volunteers performed all the
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Figure 4.2: Database Structure

gestures randomly without any training on gestures. All the recorded gestures were
performed approx. 2.5-3 meters from the Kinect.

Our database is represented as shown in the Figure 4.2. We have 11 different attributes
in the database, namely:

1. FrameID is the count of frames.
2. x, y and z are the coordinates of the right hand.
3. GestureID is numbered corresponding to the number of sequence.
4. SqlTime is used to calculate time difference between 2 frames and is measured in
milliseconds.
5. alpha, beta and velocity are calculated using x, y and z as described here in Sec-
tion 3.4.
6. ShapeID is unique labels for gestures.
7. UID is unique labels for users.

FrameID as discussed above has a count of 63,636 frames, GestureID runs from 1−1000,
ShapeID is labeled as 0− 9 for 10 different gestures and UID is labeled as 1− 5 for five
different users.

4.3 Cross Validation

Cross validation, a model validation technique to assess results of a statistical analysis.
It is mostly used to determine how well or accurately a predictive model performs in
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an experiment. Our five-fold cross validation experiment was split into 2 processes
based on data set division: 1) 80% and 20% and 2) 90% and 10%. As we know, a
better trained HMM model would apparently perform better than a less trained one.
To figure out how does an extra 10% of training, impact the performance results of a
HMM model dealing with gestures of different temporal patterns, was the reason why
we split cross validation into 2 different processes.

First process involves, 80% training data and the rest 20% as testing data. This 80% of
the data was used for training with different training parameters. The data was trained
by varying the number of states and topologies. For instance, data was trained using
2-states with forward topology and the output results were recorded. Likewise, training
was performed using 3,5 and 8 states with forward topology. Similarly, the process was
repeated with ergodic topology.

In the second process, data was divided into 90% training data and 10% testing data.
The whole process described above was iterated again.

Here in this thesis, for easy understanding, the processes were named as Forward8020,
Ergodic8020, Forward9010 and Ergodic9010. Forward8020 here means the data is
trained with forward topology but with 80% training data.

4.4 Gesture Recognition Experiment

This experiment was designed to test out the average accuracy rates of gestures. To train
the HMMs, five-fold cross validation strategy was used. To perform the experiment, a
hidden markov learning classifier was instantiated which accepts different parameters as
discussed in Section 3.5. Since our experiment is a supervised learning process, unique
ShapeID for each gesture was used as our output class labels. For the first iteration,
training parameters were set as number of states-2, Forward8020 topology and 10
output classes(10 gestures). After the training is done, the remaining 20% testing data
was given for classification. Our five-fold cross validation results in five different output
percentages. The percentage on the graph shown in Figure 4.3 are the average of all
five results for each process i.e. Forward8020. For subsequent iterations, training was
conducted with states three,five and eight. This method was re-iterated for all the
processes Ergodic8020, Forward9010 and Ergodic9010.

Consequently, as we know the HMMs get better with training, the classification results
on the chart Figure 4.3 was expected to be better with 90% training data as opposed
to 80% training data. As expected, our system performed the best with Forward9010
and eight-states. Although the previous research shows, 63.6% is not the best HMMs
can achieve but it shows that HMMs are able to train and recognize gestures based on
temporal patterns.

We know the learning algorithm creates a HMM for each gesture. In order to study
the confusion of recognition rates between gestures with different temporal models,
performed with different training parameters, we plotted a confusion matrix as shown
in the Figure 4.4.
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Figure 4.3: Average Gesture Accuracy Rate

The rows and columns in the matrix represent executed gestures and classified gestures
respectively. The last column is the number of observations for each gesture. Con-
ceivably, similar gesture models like CIRCLE and CIRCLE SLOW FAST are mostly
confused with other gesture models. As we can see in the first row, gesture CIRCLE
was executed 50 times but it was correctly classified as a CIRCLE only 33 times and
was falsely classified as CIRCLE SLOW FAST 8 times. It is evident that the classifier
was confused because our CIRCLE gesture has three more similar models but with
different temporal patterns.

We can interpret that CIRCLE FAST and CIRCLE FAST SLOW are the worst per-
forming models with accurate classification of only 11 and 16 times respectively. More-
over, our best performing gestures are DIAGONAL closely followed by VERTICAL LINE.

Figure 4.4: Forward9010 with Eight States
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4.5 User-Gesture Recognition Experiment

Our database contains data for 10 different gestures drawn by five different users. To
train a classifier for this experiment, we require a 1-dimensional vector consisting of
class labels. To classify a gesture is drawn by a specific user, we need to train our
classifier with both ShapeID and UserID as our output class labels. To achieve this,
our output labels were calculated as shown in Equation 4.1:

(UserID) ∗ 10 + ShapeID (4.1)

Using the Equation 4.1, the range of our output labels would vary from 10-60. For the
first iteration, parameters were set as number of states-2, Forward8020 topology and
60 output classes. After training, for accurate classification, the output labels has to
be compared with the trained labels. As shown in the Table 4.1, the output label is 27
since it is the amalgamation of two different labels.

Output Probability

27 0.99999999962688

Table 4.1: Raw Classification Output

To obtain the real output values for gesture and the user, we need to break it down. In
order to do so, we used division and modulo operators. Whenever we divide the output
27 by 10 and consider only the integer part we get a 2, which represents UserID and
modulo of 27 i.e. 27%10 gives an output of 7, which represents ShapeID. After this
operation, we obtain result as shown in Table 4.2.

UserID ShapeID Probability

2 7 0.99999999962688

Table 4.2: Refined Classification Output

Subsequently, training and classification process was performed using Ergodic8020, For-
ward9010 and Ergodic9010 with different states. Figure 4.5 shows the average user-
gesture accuracy rates for various states and topologies. Clearly, we can see Ergodic9010
with three-states has the best average recognition percentage at 86.8%. On the contrary
to the Section 4.4, ergodic topology has performed significantly better than forward
topology for this experiment. One of the main reasons for this might be the additional
output label attribute UserID for training the HMM.
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Figure 4.5: Average User-Gesture Accuracy Rate

Summarizing, to recognize gestures with varying temporal behaviors, we performed
gesture recognition experiment with forward topology and eight-states and achieved
an average success rate of 63.6%. For the user-gesture experiment, an average best of
86.8% was achieved with ergodic topology and three states.
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5. Conclusion and Future Work

This chapter concludes our thesis with summary of the thesis on how 3-D hand gesture
recognition using HMMs works, what are some of the limitations in our thesis which
are yet to be solved, assessment of our predefined goals and finally benefits of our new
concept and some potential extensions to our thesis which may help achieve better
results.

5.1 Summary of the Thesis

Our thesis has been designed and implemented to recognize 3-D hand gestures with
different temporal patterns by using HMMs and Kinect. Initially, our experimentation
was simple, performance was observed to be poor even for a moderately sophisticated
tasks, and resulted in insufficient and inaccurate models. Our experiments show how
training parameters of HMMs contribute to its success.

HMMs are statistical based models, best recognition does not guarantee best models.
Oftentimes, HMMs might be the best in training and recognition tasks, however, these
HMMs fail badly on different testing data consisting of simple gestures but can recognize
irrational patterns in real time. In order to maintain the evenness in the models, our
system requires large data set which is however very expensive to collect and label.
Primarily, motivated by HMMs efficiency in hand gesture recognition, the approach of
this thesis has explored behavior of HMMs dealing with gestures with different temporal
patterns. Through two different experiments with 3-dimensional hand gestures, this
thesis analyzed the behavior of HMM training with various parameters and expressed
their results with graphs and figures.

In the course of this thesis, we used skeletal tracking feature of Kinect to record isolated
gestures. We studied how HMMs behave with different parameters. First, training is a
very expensive procedure, selection of good feature vector is critical for both training
and classification performance of HMMs. Five-fold cross validation strategy was used
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to perform training in two different processes with varying parameters. For gesture
recognition experiment, training was conducted to learn and build models of gestures
using only 10 classes(10 gestures). For testing, forward algorithm was used to classify
test data by comparing it with the trained models. Test results were considered to
be satisfactory. Forward9010 with 8 states was considered the best with an average
accuracy of 63.6%. Confusion matrix was analyzed to study how well the HMMs have
performed for each gesture model.

User-gesture experiment was conducted to learn the performance of HMMs to recognize
if a gesture is drawn by a specific user. Training for user-gesture recognition was
conducted with 60 classes with varying parameters. The test results showed promising
improvement in classification. A best score of 86.8% was achieved in Ergodic9010 with 3
states. This demonstrates that with wise selection of feature vectors, right topology and
good training parameters HMMs can achieve improved accuracy in gesture recognition
even with different temporal behaviors.

5.2 Evaluation of Goals

First goal in our thesis, to study the feasibility of HMMs for recognizing gestures with
different temporal behaviors. HMMs were trained using feature vectors with differ-
ent parameters such as number of states and topologies. Accuracy results for gesture
experiment and user-gesture experiment suggest that HMM for gestures with varying
temporal patterns and user-gesture recognition are satisfactory and good respectively.
However, the feasibility study on HMMs concludes that it can handle gestures dealing
with varying temporal behaviors but with limited success.

Secondly, we analyzed how training parameters of HMMs resulted in different accuracy
rates for both the experiments. Results established in the experiments prove that the
performance of HMMs dealing with gestures of varying temporal patterns can still
achieve satisfactory results if the training parameters are chosen carefully.

5.3 Limitations in the Thesis

HMMs are temporal based models. These models have been successfully used in speech
and gesture recognitions. In our thesis, behavior and outputs of HMMs was studied for
models with different temporal patterns. Even though we achieved a satisfactory result,
there are some factor which can be considered as limitations in our algorithm. Defining
a proper start and end of gesture is a demanding task. To save both time and effort we
introduced a GUI to assist users for starting and stopping of recordings. This is done
manually and requires an additional user to do so. While recording, illumination and
complex backgrounds were not considered which might effect have an effect on skeletal
tracking.

Skeletal tracking feature in Microsoft Kinect is a very useful tool to capture and store
hand coordinates. Sometimes, skeletal tracking might lead to noisy or incomplete data.
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For example, human hand motion is not as fast as frame capture rate of Kinect so it
leads to some noisy frames in the database at the start and end of a gesture where the
user hand is still and this is the case for any gesture. Here, we didn’t consider removing
them. Other limitation in skeletal tracking is, there might be some occasions where the
tracked joint may overlap with other joints or is not tracked because of occlusions in
the recording environment leading to incomplete data.

HMMs require huge training datasets to perform better. It limits proper experiment
procedures because collecting and training large amounts of data is expensive and time
consuming. Our database size might be still too small to properly evaluate HMMs
behaviors.

5.4 Benefits and Future Work

With any research, obvious enhancements and extensions are apparent. First, in the
domain of 3-D hand gesture recognition, more experiments should be carried out. Par-
ticularly, more robust and better features needs to be extracted, such as orientation
and relative coordinates of the hand instead of absolute coordinates. Accuracy results
will improve with better features. Perhaps, better selection of shapes with temporal
behaviors might lead to better convergence. Our HMM framework can be extended to
two-stage HMMs. First-stage to recognize gestures and second-stage for task recogni-
tion as explained here [NdtLK12].

Recording gestures without noisy or incomplete data was still a limitation in our project.
Maybe, better data collection with minimal noisy or incomplete frames will yield better
accuracy results. Focusing on data, our experimental setup can be extended to more
complex and bigger size, to allow more practical applications of the recognition system.

There are many use-cases for gesture enabled technology. We propose some use-cases
which could be a potential application using gesture technology. New concept of classi-
fying isolated gestures based on their temporal behaviors can be used in high security
applications. Biometric authentication is one such application where this concept can
be used extensively. Security features using static hand gestures have already been
implemented as explained here [FZF13]. For authentication, the user can record his
own custom gesture involving temporal behavior. It could act as a two-step verification
along with password authentication.

Gesture enabled technology is fast becoming popular with automotive innovations. Ges-
ture based interfaces are successfully implemented in infotainment systems, car lock
security and so on. In the world of connected cars, this concept could promote better
road safety and driver safety by providing undivided interaction facilities and security
to expensive assets.
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Figure A.1: Ergodic8020 with Two States

Figure A.2: Ergodic8020 with Three States



34 A. Appendix

Figure A.3: Ergodic8020 with Five States

Figure A.4: Ergodic8020 with Eight States

Figure A.5: Forward8020 with Two States

Figure A.6: Forward8020 with Three States



35

Figure A.7: Forward8020 with Five States

Figure A.8: Forward8020 with Eight States

Figure A.9: Ergodic9010 with Two States

Figure A.10: Ergodic9010 with Three States
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Figure A.11: Ergodic9010 with Five States

Figure A.12: Ergodic9010 with Eight States

Figure A.13: Forward9010 with Two States

Figure A.14: Forward9010 with Three States
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Figure A.15: Forward9010 with Five States

Figure A.16: Forward9010 with Eight States
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