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ABSTRACT

Simulation is a branch of computer science which deals with building
the real world entities as models and studying their behavior. Stochastic
Petri nets are one such tool for modelling the real world entities. Behavior
of models are analyzed by different types of simulation methods. The most
common and standard approach is discrete event simulation. But there are
still some methods, whose full potential is still to be analyzed. Proxel based
simulation is one among them.

This thesis has two goals from the proxel based simulation. First goal is
to preprocess the stochastic Petri nets. The motivation behind this goal is
to automate the processes needed for proxel based simulation. Second goal
is to design an improved storage strategy for proxel based simulation. This
goal is motivated by the shorter runtime and lower memory requirements
for this simulation approach.
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Chapter 1

Introduction

1.1 Background

Computers play a vital role in the human society. Their massive computing
power is widely used in different applications. The main goal of a computer
is, to process large amount of data and convey information. The data may
come from any system which we are interested in. Close representation of
the real world entities are called as models. Simulation aims at processing
the models and conveying information about the behavior of such models
over time. From weather forecasting to electronic component failure, simu-
lation has broad range of applications.

The huge processing power of high performance computers can be used
to simulate complicated models using mathematical approximations. These
simulations can help to reduce the number of expensive real world construc-
tions and experiments to a minimum. They are also very attractive and
allow users to change parameters which would not be possible in practice.
These simulations can be used to increase efficiency and to save time and
resources.

Most of the real world models exhibit randomness in their behavior. This
is known as stochastic behaviour. In order to analyze the behaviour of these
models over time, we need to introduce the same kind of randomness in the
simulation method. The most common approach used for this purpose is
discrete event simulation. As a result, the output of this simulation method
is also stochastic in nature.

Proxel based simulation is an approach which does not require any ran-
domness during simulation. Even though the model exhibits stochastic be-
havior, the simulation results do not posses any randomness. The behavior
of the model over time, is determined in a complete mathematical and deter-
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1.2. Goals of the Thesis 2

ministic way. Moreover this approach has another advantage for simulating
the models containing rare events. For example, the chance that the Pisa
tower will fall in another fifty years is almost zero but not zero. While
simulating this model with the discrete event simulation the result will be
always zero whereas proxel based simulation approach will produce a result
of almost zero. The time and system overhead for simulating fifty years is
less for this approach compared to discrete event simulation. The results of
proxel based simulation are very accurate. Engineering branches such as re-
liability and safety, requires a simulation approach of high accuracy. Proxel
based simulation approach is suitable for these applications.

1.2 Goals of the Thesis

The current implementation of the proxel based simulation approach needs
processed data from the model. Therefore it demands knowledge about the
behavior of the model and this simulation approach. It cannot process data
from the model but requires a processed data from the model. This infor-
mation has to be supplied by the user.

We need to start this simulation approach from the models. The models
here refers to the Petri nets. This makes the proxel simulation approach
free from the knowledge requirements. Therefore we can reduce the usage
difficulties of this approach. This motivates us to preprocess the models
represented by the stochastic Petri nets. This is our first goal which can be
achieved by designing an automatic processing algorithm for the Petri nets.
This algorithm provides the necessary information needed for the proxel
based simulation.

Our next motivation is to improve the performance of this approach.
Accuracy, runtime, memory are some of the factors that determines the
performance of this approach. The storage strategy is one of the impor-
tant factor that affects the runtime and memory needed for this approach.
The storage strategy here refers to the data structure. It stores the data
and provides the methods for accessing the stored data. The data storage
and accessing methods determines the amount of memory and computa-
tional time required of this approach. Therefore our next goal is to design
a storage strategy with improved runtime and memory requirements. This
can be achieved by designing a storage strategy whose data structure can
access the data in shorter time and store the data with lower memory usage.
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1.3 Organization of the Thesis

This thesis is organized into five chapters. First chapter discussed the back-
ground of the thesis. Then it described the goals of the thesis and the
motivations. Here it explains the organization of the thesis. The second
chapter gives the theoretical introduction into the topic. First part of this
chapter describes the fundamentals, which includes some basic information
about the Petri nets and its working. Further it discusses the concepts
related to the existing approach followed by the concepts required for the
proposed approach. The second part of this chapter describes the the ex-
isting approach for proxel based simulation. The problems in the existing
approach relevant to the thesis topic are described finally in this chapter.
Third chapter describes the proposals to solve the problems described in the
second chapter. Design and implementation of the proposals are explained
in this section. Finally, we describe the contribution of the proposals and
define the performance criteria required to analyze the proposed approach.
Fourth chapter presents the experimentations and their results based on the
performance criteria defined in the chapter three. Each experiment describes
the result followed by the explanation. Fifth chapter concludes the thesis
with a brief summary followed by some suggestions to improve the proposed
approach.



Chapter 2

Fundamentals and Existing

approach

2.1 Fundamentals

In this section, first we will introduce stochastic Petri nets as the basic
requirement for the entire work which is followed by the state change of the
stochastic Petri nets. In this process we extract the reachability graph. This
is the starting point of the current implementation. Next we will describe
the concepts required for the existing approach. This includes the method of
supplementary variables and the proxels based simulation. Finally, we will
describe the concepts required for the proposed approach. This includes
hashing techniques.

2.1.1 Stochastic Petri nets

Petri nets are a promising tool for describing real world entities as mod-
els [Petri nets world 2004]. As a graphical tool, Petri nets can be used as
a visual-communication aid similar to flow charts, block diagrams and net-
works. We are going to use the term stochastic Petri nets instead of models
for further discussions. Stochastic Petri nets are represented graphically
with the following components.

Tokens : Tokens represent the objects of the model. For example, taxis
in the taxi stand, passengers in a flight etc are modelled with tokens.
They are represented as a dot.

Places : Places hold the tokens. These are used to model the locations.
The taxi stand is a place which holds the token as taxi. They are
represented as a circle.

4
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Transitions : Transition represents the end of an activity. A taxi leaving
or coming to the taxi stand, passengers getting off or boarding on the
flight are some examples for the activities. There are two types of
transitions.

Timed Transitions : These are used to model activities associated with
time. To model activities such that, the time required to repair the
taxi, boarding of passengers at the specified time etc. They are drawn
as a rectangle.

Immediate Transitions : These are used to model activities which does
not take time such as activities described by the condition ”immedi-
ately” and ”as soon as”. For example, when a cash automata is free,
then the customer can occupy it immediately. They are drawn as a
bars.

Input Arcs : Input arcs connects places to transitions. This place is re-
ferred as the input place of this transition. These arcs determines the
occurrence of an activity. They are associated with multiplicity. Mul-
tiplicity is the number of tokens necessary for an activity to occur.
After the end of an activity, number of tokens specified as the mul-
tiplicity are destroyed from the input place. They are are drawn as
arrows.

Output Arcs : Output arcs connects transitions to places. This place is
referred as output place. They are also associated with the multiplicity
which determines the number of tokens created in the output place,
at the end of an activity. They are also drawn as arrows.

Inhibitor Arcs : Inhibitor arcs connects places to transitions. They are
also associated with the multiplicity. This inhibits the transition, that
is, blocks the activity when the number of tokens present in the cor-
responding place is greater than or equal to its multiplicity. They are
drawn as arrows with circles.

Guard Functions : The transitions may contain guard functions. As the
name itself suggests, it will guard the transition. In other words it
blocks the activity. This is known as disabling a transition. This func-
tion is assigned with checking tokens in the various places. Depending
on the checking condition, these functions will disable a transition by
returning ”FALSE”.

Initial Marking : Markings represent the discrete states of the system.
Due to different transition, the tokens are distributed over various
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places of the Petri net. The initial state of the model or the Petri net
is known as initial marking.

Consider a production system with two kinds of products (A and B).
It manufactures the products according to the client’s request. Once the
production is over then the system will be ready for next request. Petri net
for this production system is shown in the Figure 2.1. It has four places
marked as P0, P1, P2, P3, timed transitions marked as T1, T2, T3, T4 and
an immediate transition as T5. Initially there is a token in the place P0. All
the input and output arcs have a multiplicity of one and there are no in-
hibitor arcs or guard functions. Token in the place P0 represents the state of
the system before starting its production. The clients request for the prod-
uct A is modelled with transition T1 and B is modelled with the transition
T2. Token in the place P1 or P2 represents the state of the system, while
manufacturing any one of the product A or B. Production time is modelled
with T3 for the product A and T4 for the product B. Token in place P3

represents that state of the system that it has finished the production. As
soon as the system finishes the production, it will return to the initial state.
Therefore the transition T5 is an immediate transition.

Figure 2.1: Petri net of a simple production unit

Dynamics of the Petri net is exploring the different distribution of tokens,
among the places of the Petri nets. Activities creates these dynamics. This
is produced as a result of transitions, firing at various times and conditions.
Further we are going to describe the reachability graph in this section. In
order to understand this concept, we describe the firing conditions which
creates the state change in the Petri net. For a transition to fire or it is said
to be enabled, the following conditions have to be satisfied:
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• The input arc should be active. In other words the number of tokens
in the input place of the transition should be greater than or equal to
the arc’s multiplicity.

• The inhibitor arc should be inactive. That is, the number of tokens in
the output place should be less than or equal to the arc’s multiplicity.

• The guard function associated with the transition should not return
”FALSE”.

Satisfying the above conditions makes a transition ready for firing. We
will assign the time for the end of an activity. This time is a part of the
Petri net specification which describes a transition. This is know as firing
time. The firing time assigned to the transition is reduced with time, until
it is enabled without interruption. It will fire when reducing time reaches
zero. Therefore a timed transitions will take an amount of firing time to fire
when it is ready. The immediate transition will fire immediately when it is
ready. There are two memory policies of the timed transition:

Enabling memory policy: If a transition is enabled, its firing time
is reduced by the time it has been enabled without interruption. These
transitions when disabled, have no memory of the amount of time already
enabled and must re-sample a new firing time, once they are re-enabled.
This is analogous to the re-start option in a windows operating system,
forgetting all the programs which are running before.

Age policy: With this policy a transition that was enabled and becomes
disabled without firing, retains its already enabled time and picks up from
there without re-sampling, when it becomes enabled again. This is analo-
gous to the stand by option in a windows operating system, remembering
all the programs which are running before.

If a transition fires, then the tokens are re-distributed according to the
input arc’s and output arc’s multiplicity, in the corresponding input and
output places. Each such different re-distribution is termed as a marking of
the Petri net. We are going to denote the state change as a set of markings.
Each marking corresponds to a discrete state of the Petri net. Formally it is
denoted by M = {m0,m1,m2..,mn }, where n stands for the number of differ-
ent states that can be reached by a Petri net. Each marking is denoted by
mi = (P1,P2,P3,..,Pn) where each Pk is a number which denotes the number
of tokens in the corresponding place. The Figure 2.1 represents the initial
state of the Petri net with marking m0=(1,0,0,0). The state change of the
Petri net by the firing rules are as follows:
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• The transition T1 should fire to reach the state with marking m1=(0,1,0,0).

• The transition T2 should fire to reach the state with marking m2=(0,0,1,0).

• From the marking m1=(0,1,0,0), only possible transition to fire is T3.
This leads to the state change represented by the marking m3=(0,0,0,1).

• From the marking m2=(0,0,1,0), only possible transition to fire is T4.
This leads to the state change but to the same marking m3=(0,0,0,1).

• The transition T5 is an immediate transition. As soon as the state of
the Petri net reaches a state represented by the marking m3=(0,0,0,1)
it goes to the state represented by the initial marking m0=(1,0,0,0).
Therefore the marking m3 is termed as ”vanishing marking” and
other markings are termed as ”tangible markings”.

We can denote the whole process as a graph with vertex as the marking
and the edge as the transition. This graph is known as the ”reachability
graph”. This gives the set of all possible discrete states of the Petri net un-
der study. The reachability graph of the Petri net is shown in the Figure 2.2.

Figure 2.2: Reachability graph of the production unit’s Petri net

2.1.2 Method of Supplementary variables

The proxel based simulation is based on the approach of supplementary
variables. This approach analyze stochastic behaviour in a deterministic
appraoch. This makes the proxel based simulation free from randomness.

We are interested in simulating the models, consisting of both determin-
istic and stochastic behaviour. In order to model the stochastic nature of
the model, the timed transitions can be described with random variables.
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Most of the activities occurring in the real world are random. From getting
a fever to the break down of our car. No one can say the exact timing
for those events. For example, modelling a customers arrival in a bank
can take random values because the arrival of the customers is random. It
is not possible to say this many customers will arrive in this time. Even
though the arrivals take random values, a closer look at these values over
time exhibit some characteristics. These characteristics can be described
with Uniform distribution, Exponential Distribution, Normal Distribution,
Weibull distribution, etc [Random distributions 2004]. Let φ be a random
variable describes a transition of time duration τ . Then the random firing
time of φ can be described with

• Probability Density Function (PDF) represented as f(τ)

• Cumulative Distribution Function (CDF) represented as F(τ)

Consider a transition T described by random variable φ of duration τ

with its cumulative distribution function F(τ) and corresponding probability
density function f(τ). The cumulative distribution measure the probability
that a transition fires, with waiting time of τ . There exists another function
called survival function described by 1-F(τ). This measures the probabil-
ity that the corresponding transition has not fired with waiting time of τ .
Hence the distribution of a random variable of duration τ can be expressed
in three closely related ways:

Distribution of firing time of T : f(τ) (2.1)

Survival Function of T : S(τ) = τ

∫
αf(u)du =1-F( τ) (2.2)

Instantaneous Rate Function of T : h(τ)= f(τ)
S(τ) (2.3)

The Instantaneous Rate Function shortly represented as IRF has a rea-
sonably intuitive meaning. It is the probability that a transition having not
fired up to time τ will fire during the infinitesimally small interval τ+dt.
The Instantaneous rate function determines the number of firings occurring
per unit time. Therefore IRF represents the continuous rate of flow of prob-
ability for the random variable.

The method of supplementary variables is explained in [German 2000].
First we are going to describe this approach with an analogy followed by
the actual approach. Consider two water tanks A and B at a same height.
There are two pipes between A and B. One is connected from A to B and
another one is connected from B to A. Assume that there is one liter of
water in the tank A. As time goes on, the water from A goes to B. Now we
can observe the water in B depends on the rate in which the water flows
from A. The rate here, refers to two questions,
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• How much water is in the tank A ?

• How much time the water is flowing ?

The supplementary variable approach considers the probability as a liq-
uid like water which flows from one state to another state of the model. The
main aim of this method is to track the flow of probability mathematically,
using the IRF. This IRF is considered to be the rate of flow in the water
tank example. The tanks are nothing but markings or discrete states. The
questions which determine this probability flow is given by,

• How much probability is in the previous marking ?

• How much time the transition causing the state change is enabled ?

This enables the proxel based simulation to predict the behavior of the
model deterministically even though the model is stochastic. The determin-
istic prediction comes from IRF calculation. The results of this approach
are the probabilities of different markings over time. From these results it
is possible to predict the behavior of the system because different markings
represents different discrete state of the system. The total probability of
1 in the initial marking during the start will be redistributed over time.
This redistribution is according to the IRFs of the corresponding transitions
which cause changes in the system. The supplementary variables are the
measure of a transition ’s age intensity τ . In other words, it describes how
old a transition is ? The calculation of IRFs is based on this parameter τ .
Therefore for an enable memory policy, transitions once disabled is consid-
ered as dead and when enabled again it is newly born. But for age memory
type. once disabled it is sleeping and when enabled again it remembers the
age.

2.1.3 Proxel Based Simulation

Proxel is a new computational unit for analysing the behaviour of models
[Horton 2002]. This approach is used for analyzing the behaviour of the
stochastic Petri nets. Discrete event simulation is used as a standard ap-
proach for this purpose, which requires to simulate the same kind of stochas-
tic nature during the simulation, to predict the behaviour. Therefore the
output or result of such analysis will be stochastic in nature. The proxel-
based simulation is a deterministic approach based on the method of sup-
plementary variables. It works with the state-space of the model. The idea
behind this simulation algorithm is to approximate the discrete stochastic
process in a continuous approach, using a discrete time step dt. This yields
a computational model, consisting of a set of discrete states at each time
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step with certain probabilities. The name proxel comes from the analogy
of pixel in computer graphics. Pixel is a basic unit consists of the value
at x and y co-ordinate in a two dimensional image whereas proxel is data
structure with following components:

• marking mi represents the corresponding discrete state of the system.

• global simulation time t, this reflects the simulation time in steps.

• age intensity Vector.

• p = probability that the model will be in the marking mi due to the
enabling times of the transitions in the age intensity vector.

Consider a model having transitions T1,..,Tn. Let τ1,..,τn represents the
enabling time of each such transitions. Each of them are referred as age
intensity. The age intensity vector is a vector which contains an entry for
the enabling time of each transition T1,..,Tn. At time t, the age intensity
vector is defined as τ(t) = ( τ1 , ..., τn). These variables which constitute
the age intensity vector are known as supplementary variables. The value
of this variable increases with time, only if the transition is enabled.
It uses age intensities of the transitions as the parameter while calculating
the IRF. The proxel as a whole conveys that, the marking mi occurs with
the probability p, at time t, due to the enabling time of the corresponding
transitions in the age intensity vector.

Figure 2.3: Water level over time

Consider the water tank example described in the previous section.
There are two pipes such that they will allow uni-directional flow of wa-
ter between the tanks. If we observe the water over time, let us say 0, dt,
2dt, then the flow of water depends on the time and the amount of water in
the flowing tank. Assume we have one litre of water in the tank A. The rate
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of flow from tank A to B is 0.2 litre per dt and B to A is 0.1 litre per dt. At
each time step the sum of the capacity will be one litre. The level of water
in each tank thus depends on two entities. The amount of water and the
time for which it is flowing. The water levels in the tanks were described in
the Figure 2.3.

We are going to describe the proxel approach with a simple model, based
on the analogy explained above. Consider a machine maintenance model
with two states, Running and Maintenance. Figure 2.4 shows the Petri net
of the model whose reachability graph is shown in the Figure 2.5

Figure 2.4: Petri net of the maintenance model

Figure 2.5: Reachability graph of the maintenance model

At time 0, the initial proxel represents the initial marking. It is given a
probability of 1. The age intensity vector has an entry for each transition
T1 and T2 as τ1 and τ2. For the initial proxel both of them is zero. This
implies that the transitions T1 is enabled but for no time and transition
T2 is disabled initially. During the next time step dt, we have two proxels
generated from the initial proxel. One of them represents the state change
from marking m0 to m1 . Another proxel represents the chance of staying
in the same marking. This is similar to the water tank example where we
explore the possible water flow from the tanks. The new proxel representing



2.1. Fundamentals 13

m1 has the age intensity vector as (0,0). It tells us that the transition T1 is
fired now. Another proxel representing m0 has the age intensity vector as
(dt,0). This is because the transition T1 is enabled for the time dt but not
fired. The second entry is zero because the transition T2 is not enabled.

Let p0 and p1 represents the probability of the proxels, representing the
marking m0 and m1. They are calculated based on the IRFs and the type
of the transition such as Exponential,Uniform etc. This is similar to calcu-
lating the water flow from each tanks in the water tank example.

p1 = 1.0 * h(Enabling time of the corresponding transition i.e T1 )* dt.

p0 = 1-p1 .

Proxels tracks the flow of probability from the initial marking of the Petri
net to all other possible markings represented in the state space. Therefore
the initial probability of one in the initial marking is redistributed to all the
possible markings at each time step. The proxel based simulation approach
generates a number of proxels for each time step. These proxel represents
the different markings of the state space. This approach analyze the model’s
steady state behavior or the behavior until the specified time. This results
in the generation of series of proxels at each time step, from the generated
proxels of the previous time step resembling a tree structure. This structure
is referred as proxel tree. This tree represents the state space in terms of
proxels. This is shown in the Figure 2.6.

Figure 2.6: Proxel tree of the maintenance model

During the process of generating the proxel tree, at each discrete time
step, the same proxels may be generated again and again from different
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predecessor. From the Figure 2.6, we can notice that there are two same
state proxels containing marking m0 (green) and another two with marking
m1 (red). The same state proxels refers to two or more proxels with same
marking and same age intensity vector. We are not going to store all those
proxels. In each case we sum up the probabilities of two proxels in single
proxel. This reduces the storage space by having only one proxel of its own
kind. If we allow duplicates then we have to process all those proxels in
the next time step. Therefore we need to process only a single proxel which
reduces the processing time and storage space at each discrete steps.

2.1.4 Hash Functions

Hashing is a searching technique where each search item is characterized by a
key, which is a part of the item used to identify it [Introduction to Hash funtions].
In our case, the item refers to the proxel and key refers to the key computed
from the proxel. In general a hash function h(k) is represented in the fol-
lowing way,

h(k) = (x) mod N (2.4)

In this equation the k refers to the item’s key and N refers to expected
number of items to be stored. The hash function in the hashing technique
generates the hash x from which the hash value is computed from Equa-
tion 3.1. A hash table is a data structure which consists of two entities. An
array with capacity N called as Hash table. The second one is the hash
function. Hash function computes a hash from the items key. This hash
may be 16, 32 or 64 bit integer. The item is stored in the array by the
taking the hash value as the index. If we have an item with its key then we
will compute the hash value to know the index where it is stored. Therefore
it is possible to find the item in a single access theoretically.

Collisions: In practice it is very hard to design a hash function which
will distribute different keys to different hash values. If one or more different
keys have a same hash value, then the items are said to be colliding. This
is know as ”collision” in hashing. There are several ways to handle this
collision. The simple way of handing the collision is ”linear probing”.
There will be another array in the index where the collisions occurs. This is
called as ”bin”. All the items which causes collisions in the specified index
are stored in the bin. While searching for an item, the key is computed to
know the index, where it is stored. Afterwards probing or looking into this
bin for the specific item will be done. Performance of this method depends
on the load factor α which is defined as :

α =
n

N
(2.5)
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where n is the number of items stored and N is the dimension of the
array where it is stored. Smaller the load factor α better the performance
is. The better performance here refers to the condition where the number
of collisions is smaller. Another factor which determines the collisions is
the length of the key. The length of the key refers to the number of bits
in the key. The hashing technique will distribute the keys according to the
number of bits in the key. Larger this number, smaller the collisions will be.
The worst case for this linear probing for searching an item, is the dimen-
sion of the largest bin. This comes from the fact that if we want to search
an item which is located at the last index of the largest bin. Searching
works well even with poor hash functions, that is the functions that do not
distribute the input cleanly. Most automated retrieval mechanisms today
are based on hashing. Figure 2.7 shows the hash table with some data items.

Figure 2.7: Hashing technique

2.2 Existing approach

In this section we describe the implementation details of the existing ap-
proach for proxel based simulation. We are going to present the approach
with an illustration. The first sub section describes starting point of this
approach. Next sub section describes the implementation details of this
method followed by some research problems relevant to our thesis topic.

2.2.1 Input Specification

The current implementation has the following details, in the input file used
for the proxel based simulation:
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• time interval dt, known as discreatisation parameter, is the most im-
portant parameter which affects the accuracy of this approach. It is
specified as a part of the input specification. The question of how close
we are approximating ? depends on this parameter. More discussions
about this parameter and resultant error is described in [Horton 2002].

• simulation time, the time duration of the simulation, shortly repre-
sented as t.

• reachability graph of the Petri net.

• transitions with their type, parameter and memory policy.

• age intensity vector containing a supplementary variable τ i for each
the transition Ti of the Petri net.

• initial marking m0 which represents the initial state of the Petri net.

Figure 2.8: Petri net model for the illustration

In the Petri net shown in the Figure 2.8 assume the transitions T1 and
T2 belongs to the age memory policy. T3 and T4 are of enable memory
type. The input specification of the current implementation consists of the
following details.

• time interval dt, 0.2

• simulation time t, 50.

• reachability graph can be represented in several ways. One such way is
a reachability matrix.The row and column corresponds the the mark-
ing and each entry in the matrix corresponds to the transition. The
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entry in i,j of the matrix is transition then that transition will make
the change from marking mi to mj . We define ø for no such transition
from those markings. The matrix for our study model is shown below,

Marking 0 1 2 3

0 ø T1 T2 ø
1 ø ø ø T3

2 ø ø ø T4

3 T5 ø ø ø

• age intensity vector

−→τ = (τ1 , τ2 , τ3, τ4)

Let τ1 , τ2 , τ3 and τ4 represent the elapsed time of the transitions T1,
T2, T3, T4 respectively in our study model. The immediate transition
T5 does not require such variable because there is no time delay for
firing T5 when it is enabled.

2.2.2 Implementation Details

The implementation of the current approach works on the state space of
the Petri net. The state space of the example Petri net is shown in the
Figure 2.9. We describe the steps in the current implementation for our
example.

Figure 2.9: State space of the Petri net model



2.2. Existing approach 18

Initialization: We denote the initial proxel as P0. This is required to start
the simulation algorithm.

1. The marking number of P0 is assigned to 0 representing the initial
marking m0.

2. The age intensity vector of P0 is represented as −→τ (0) = (0, 0, 0,
0).

3. The probability pr is assigned as one. Because the only possible
discrete state is represented by this proxel with the marking m0.

Storage strategy : For storing the proxels, unbalanced binary tree is used
as the data structure [Lazarova-Molnar and Horton 2003 A]. Two such
trees are used for the current implementation denoted as BTcurrent

and BTnext. The tree BTcurrent contains proxels for processing dur-
ing the current time step. While processing these proxels new proxels
are created which are stored in BTnext. It contains all the proxels
to be processed for next time step. After processing BTcurrent then
this tree no longer need. Therefore BTcurrent is deleted and the tree
BTnext is assigned to BTcurrent, leaving BTnext empty. This pro-
cess is repeated for each time step. The Figure 2.10 shows the entire
process of proxel generation. This represents the state space of the
Petri net in terms of proxels.

Figure 2.10: Proxel tree of the study model

The tree BTcurrent is initialized with the initial proxel. The key
used to store the proxel is calculated from the age intensity vector and
marking of the corresponding proxel.
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Generation of proxels : In the next time step, new proxels are generated
for each transition in −→τ which are enabled in the marking m0. For our
study model there are two such proxels due to the enabled transitions
T1 and T2 from the marking m0. These two proxels with markings m1

and m2 represents the condition that the transitions T1 and T2 are
fired respectively. We also have another proxel with same marking m0

which models the condition, if both of the transitions are enabled but
does not fire.

Changes in proxel’s components : After a new proxel is generated in
the above step then its proxel components should be updated.

1. marking number of the new proxel should represent the new dis-
crete state,

2. global simulation time is incremented with time step dt,

3. The probability of this proxel is calculated from the IRF of the
age intensity τi of the transition Ti,

4. Updating −→τ has the following steps.

If a proxel represents the transition(s) enabling condition and
staying in the same marking, then its entry(s) τi in −→τ is incre-
mented with dt.

If a proxel represents the condition in which the transition Ti is
fired, then its entry τi in −→τ is made zero. The other transitions
enabling time, which are disabled by this transition is updated
as follows,

If the transition Tj memory type is age, then its corresponding
entry τj is kept as it is.

If the transition Tj memory type is enable, then its corresponding
entry τj is made zero.

The age intensity vector −→τ of the three proxels generated in time
step dt, from the initial proxel time step at time step 0, is updated
according to the above conditions. For the same state proxel which
represents the marking m0 is given by, −→τ = (dt , dt, 0, 0). It models
the condition that the transitions T1 and T2 were enabled for time dt
without firing. For the proxel containing m1 is given by, −→τ = (0 , dt,
0, 0). The 0 for τ1 comes from the fact that T1 is fired and dt for
τ2 from the age policy of T2, such that it is enabled for time dt and
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disabled now. Similarly for the proxel containing m2 is given by, −→τ =
(dt , 0, 0, 0)

We assign the probability to the proxel containing the marking m0

after calculating the IRFs of the other proxels. This comes from the
fact that the remaining probability after calculating the IRFs of the
other proxels, is the probability to remain in the same marking.

Storage of proxels : After the generation of each proxel the proxels are
stored in the tree BTnext. For such proxel, the key is computed form
the marking and age intensity vector. Key comparison is made with
the existing proxels, to store the new proxel in BTnext. Figure 2.11
shows the binary tree with proxels at time step dt.

Figure 2.11: Binary tree at time step dt

Next we describe the role of storage strategy employed here. The
proxels representing the same state with same age intensity vector are
combined by adding their probabilities into a single proxel. When a
new proxel is generated we search for the occurrence of same proxel
in BTnext. If we find such proxel then we will add the new proxel’s
probability to that proxel. Otherwise we add the proxel to the tree.
Here it takes logarithmic time to search a proxel. The best case for
searching will be O(log N) where N is the number of proxels in the
searching tree BTnext. This requires every proxel in the tree to have
a right and left child proxel.

Simulation: The results of this implementation are the probabilities of the
markings in the steady state or over specified time. Therefore each
proxel’s probability is stored in a separate array whose index corre-
sponds to the marking’s number. For example in the current step,
we store the proxel’s probability containing marking m0 to the array
whose index is 0. If we have another proxel with same marking m0
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then irrespective of age intensity, the probability is added to the same
index 0. This array is generated for each time step.

Now we remove BTcurrent. BTnext act as BTcurrent for the next
time step. We repeat the steps explained in ”Generation of proxels”
to ”Simulation” at each time step. While moving to the next time
step, global simulation time t of each proxel is incremented by dt. We
stop the simulation when t reaches the specified simulation time. Fig-
ure 2.12 shows these changes in the binary tree with proxels at time
step 2dt.

Figure 2.12: Binary tree at time step 2dt

A note on vanishing marking: Markings in which immediate transitions
can be enabled are termed as vanishing markings. There is no need to
store the proxels containing vanishing marking. Instead the successor
proxel is found from these proxels without incrementing dt. That is the
system will go to next marking without time delay. The probability
and age intensity vector associated with these proxel are assigned to
the successor proxel. [Lazarova-Molnar and Horton 2003 C] explains
this approach.

A note on probability value: The current implementation has threshold
value for probability. The threshold value is used to discard the prox-
els. If the probability value of the proxel is less than the threshold
value for example 10E-12 then it is discarded [Horton 2002]. This
comes from the fact that the probability of occurrence of those mark-
ings with the given age intensity vector is very very less. They do not



2.2. Existing approach 22

have a significant effect in the overall probability. This aids in the
storage space and runtime improvement significantly.

2.2.3 Open Questions

This section describes some of the research problems raised by this imple-
mentation, relevant to our thesis topic. These problems are the motivation
behind the proposed approach.

Advantages of preprocessing

The existing implementation for proxel based simulation is based on the
reachability graph. Therefore the current implementation requires the knowl-
edge about the dynamics of the Petri net and proxel approach. The mo-
tivation of constructing an automated interface which processes the Petri
net prior to the simulation forms our first goal. Therefore the Petri net
is processed to obtain the reachability graph. We propose to present the
reachability graph in the form of reachability matrix.

The age intensity vector −→τ has entries for each of the transition T1 ,..,
Tn as τ1 ,.., τn. It is observed in most of the cases, that all the entries in −→τ
are not relevant for each marking of the Petri net. For example consider our
study model. The −→τ in marking m0 have to include only the enabling times
of transitions T1 and T2. Because only these two transitions are enabled in
the marking m0. Hence it is enough to store τ1 and τ2 in −→τ for marking m0.
Similarly for other markings such as m1 and m2 needs τ3 and τ4 respectively.
Now it is possible to define a marking dependent age intensity vector. Based
on this argument we have the following age intensity vector for each marking.

Marking Variables

m0 τ1 , τ2

m1 τ3

m2 τ4

m3 ø

Proxel simulation approach needs to remember the age intensities of the
transitions T1 and T2 when they are disabled. Because both of them belongs
to age memory policy. When transition T1 fires from marking m0 then the
transition T2 is disabled. This leads to the argument that the enabled time
τ2 of transition T2 while coming to the same marking m0 again has to be
remembered. This happens, when we reach the marking m0 via m2 and m3.
Therefore these markings has to remember τ2. The similar argument holds
for τ1 for the markings m1 and m3. Therefore the final marking dependent
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age intensity vector is specified as:

Marking Variables

m0 τ1,τ2

m1 τ3,τ2

m2 τ1,τ4

m3 τ1,τ2

We describe the above process as finding the optimal supplementary
variables for each marking [Horton 2002]. This aims at some kind of im-
provement for the proxel simulation approach. The intuitive explanation
for optimization can be explained as follows. First, the reduction of key
computation time. While storing, key for a proxel is computed from age
intensity vector and marking. Larger the age intensity vector, larger will
be the proxel key. This increases computational time for the key computa-
tion and updating the age intensity vector −→τ i. The second part, memory
required for each proxel. By having the less entries for −→τ i for each marking
mi, the amount of memory required for each proxel is reduced by 32 bits
(implementation specific) for an irrelevant entry.

Storage Strategy

We described about the storage strategy employed in the existing approach.
Unbalanced binary tree is used for storing proxels. In best cases, the time
required to search a proxel is O(log N). This requires the tree to be bal-
anced. In other words, each proxel in the tree should have a right and left
child proxel. We need to do some balancing when the tree does not satisfy
the condition. The time required for this affects the simulation runtime.
The time required for balancing the tree is more and the tree without bal-
ancing performs well than balanced tree. Therefore it was decided to use
the unbalanced binary tree [Lazarova-Molnar and Horton 2003 B] without
any balancing.

In worst cases, the time required to search a proxel in this tree will be
O(N). It may take 1000 access to search a proxel in a tree containing 1000
proxels. This will happen when the proxel is added to the tree either as
a left or right child always [Algorithms and Data Structures]. Further if
the simulation is done for a very long time or for complex models then the
number of combining proxels will be more. If the time required to search a
proxel during these conditions is linear, then the simulation time increases
to a large extent. Therefore we need an improved storage strategy to over-
come this problem. Introduction of this problem and a study is made in
[Lazarova-Molnar and Horton 2003 B]. This goal is a supplementary work
to that research. This forms the motivation for our next goal of designing an
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improved storage strategy for proxel based simulation This aims at reducing
the searching time and storing time of the proxels. The improvement here
refers to the improved runtime and memory requirements.



Chapter 3

Proposals for improving the

existing approach

In this section we describe our proposals for improving the existing approach.
We explain our proposals in two steps. The first part explains the method
employed for solving the problems related to the preprocessing of Petri nets.
Next part describes the storage strategy which can be used for proxel based
simulation.

3.1 Pre-processing of the Petri nets

The preprocessing is an automated process to reduce the usage complexity
of the current implementation. We propose this part has to be included
with proxel simulator. Therefore the proxel based simulator requires only
the Petri net specification. We divide the preprocessing process into the
following steps,

• Specifications of the input Petri net file.

• Generating the reachability graph from the Petri net.

• Defining marking dependent age intensity vector.

3.1.1 Specifications of the Petri net

In this section, we describe the ways of specifying a Petri net file. The
preprocessing approach works on this specification. Intuitively the specifi-
cation defines the Petri net. We number the transitions as T1,..,Tn, places
as P0,..,Pn. We use the Petri net shown in the Figure 3.1 for the explana-
tions. The components of the input Petri net specification file are as follows.

25
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Figure 3.1: Petri net of the study model

Number of components: The number of places, transitions, input arcs,
output arcs and inhibitor arcs in the Petri net are specified in this part of
the file.

Arcs properties: In this component we specify the connecting places and
transitions of the arcs along with its multiplicity. Each type of an arc has
its own specification. They are as follows:

Input arc: (Place Transition Multiplicity)

Output arc: (Transition Place Multiplicity)

Inhibitor arc: (Place Transition Multiplicity)

Initial marking: The initial state of the Petri net is specified in this
component as the number of tokens in each place as follows:

(# P0,# P1..# Pn)

Transitions properties: Each transition in the Petri net is specified as a
4 tuple entity.

(Tn,Type,Parameters,Policy)

where n in Tn is the number obtained during the numbering process. The
next entry is the type, if it is timed then it is specified as E for Exponential,
D for Deterministic, U for Uniform, etc., or if it is immediate then it is spec-
ified as I. Followed by type is the parameters. For immediate transition the
parameter will be the probability. For other transitions, it depends on the
data from the model. The last entry is the type of the policy. We specify
”A” for age memory policy and ”E” for enable memory policy.
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Simulation time: This is the time t up to which the simulation has to
run.

Time step: This is the discretisation parameter dt as discussed in the
previous chapter.

Now we specify the example Petri net shown in the Figure 3.1 as follows.

# Specification of the petri net
Number of Places Transitions Input-arcs Output-arcs Inhibitors
4 5 5 5 0
Input arcs (Place → Transition Multiplicity)
P0 T1 1
P0 T2 1
P1 T3 1
P2 T4 1
P3 T5 1
Output arcs(Transition → Place Multiplicity)
T1 P1 1
T2 P2 1
T3 P3 1
T4 P3 1
T5 P0 1
Inhibitor arcs(Place → Transition Multiplicity)
Initial marking
1 0 0 0
Transitions (Number Type Parameter Policy)
T1 U 1.5 3.3 A
T2 U 1.5 3.3 A
T3 U 1.5 3.3 E
T4 U 1.5 3.3 E
T5 I 0.3
Maximum Time
50
Time step
0.2
# End of the specification of the Petri net
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3.1.2 Reachability graph generation

In this section, we explain the approach to generate the reachability graph
from the Petri net specification. For this purpose, we use popular breadth-
first-search algorithm in computer science. The firing rules of the Petri net
are added to this algorithm[Gianfranco ciardo and Andrew S. Miner 2002].
The breadth-first-search technique explore all the possible discrete states
created by the transitions in the Petri net. The implementation of the al-
gorithm assumes the Petri net is bounded. Boundedness here refers to the
set of all markings generated by the Petri net is finite. We present here the
reachability graph of the Petri net in the Figure 3.2.

Figure 3.2: Reachability graph of the Petri net under study

Algorithm Reachability

completedMarking = φ ;
foundMarking = { Initial marking }

while foundMarking 6= φ

do begin
i = RemoveMarking(foundMarking)
completedMarking=completedMarking ∪ i
for each transition T that is enabled in i
do begin

j = GenerateNewMarking(i,t);
SearchInsert(j, completedMarking∪foundMarking, foundMarking)

end;
end;
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The description of the algorithm is as follows. This algorithm starts
with the initial marking specified in the input Petri net file. The algo-
rithm uses two data structures, completedMarking, used to keep track of the
generated markings which forms the reachability matrix and foundMarking
which is used to store the markings temporarily. The algorithm stores the
generated markings in both of these structures. The markings in found-
Marking is removed while generating the successor markings from it. These
successor markings are generated by the function GenerateNewMarking.
This function generates new markings j with the enabled transitions in the
marking i. The function SearchInsert search for the occurance of the new
marking, in completedMarking. If the marking is already generated then
it wont add the marking, otherwise it adds the new marking to complet-
edMarking and foundMarking. When the algorithm explores the possible
markings of the Petri net then foundMarking becomes empty. This make
the algorithm to stop further processing. Finally this algorithm produces
a reachability matrix which contains the markings of the Petri net as row,
column index and transitions as the element of the matrix.

We illustrate this algorithm to our Petri net model. Initially the marking
m0 is stored in foundMarking. Now the algorithm start exploring the possi-
ble markings. It removes the initial marking from foundMarking and store
that marking in completedMarking. Then it finds the successor marking with
GenerateNewMarking. This results in two markings m1 and m2 due to
the enabled transitions T1 and T2 from marking m0. These two markings
are stored in foundMarking and completedMarking. Next step, the algorithm
removes marking m1 from foundMarking and generate new marking m3 due
to transition T3. Again this is stored in foundMarking and completedMark-
ing. Then it removes the marking m2 from foundMarking and generate the
new marking m3 due to transition T4. This marking is already a generated
marking, so the function SearchInsert does not allow this marking to be
added in foundMarking. Finally the marking m3 is processed to get m1 due
to the transition T5. This is also a marking generated in previous steps of
the algorithm. So foundMarking will become empty to stop this algorithm.
The algorithm performs a breadth-first-search for our study model Petri net
and produce a reachability matrix as mentioned below,

Marking m0 m1 m2 m3

m0 ø T1 T2 ø
m1 ø ø ø T3

m2 ø ø ø T4

m3 T5 ø ø ø

This matrix not only have the possible markings of the Petri net but also
the information about the tangible and vanishing markings. The vanishing
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marking is one which has an entry of an immediate transition. In our case
it is marking m3 which has an entry of T5 termed as vanishing marking.

3.1.3 Marking dependent age intensity vector

This section describes our design and approaches in finding age intensity
vector for each marking. The age intensity vector has entries which are
relevant to the marking. In this process, we reduce the constant size age
intensity vector of each marking to variable sized vector. The variable size
has only the entries for transitions which are relevant for the marking. The
question of relevancy has a broad meaning of optimality. Therefore we
restrict our relevancy to the guidelines which we designed for this purpose.
Hence we refer to this implementation as an algorithm to find a nearly
optimal number of supplementary variables.

Guidelines for the Optimality

In order to find a nearly optimal number of supplementary variables for each
marking, we describe a set of guidelines designed according to the study and
analysis of the Petri nets. Each of these guidelines is described with a sce-
nario using our reachability graph as follows:

Figure 3.3: Reachability graph of the Petri net under study

1. If the marking has one or more transitions, then it has to remember
the enabling time of the transition, until firing. We denote the age
intensity vector for each marking as

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1 τ3
−→τ 2 τ4
−→τ 3 τ5
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2. A vanishing marking does not need to remember τi, for the immediate
transitions Ti enabled in that marking. This comes from the fact that
immediate transition fires without time delay. In our case marking m3

is a vanishing marking hence our age intensity vector reduces to ,

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1 τ3
−→τ 2 τ4
−→τ 3 φ

3. In the Figure 3.3, from the marking m0, transitions T1 and T2 are
enabled at the same time. Suppose we have the memory policy of
transitions T1 and T2 as enable, then the marking m0 needs only one
variable for storing the enabling time of both the transitions. This
comes from the argument that if one of the transitions is fired, then
the disabled transition does not need to remember the time for which
it was enabled. In this case we specify the marking dependent age
intensity vector as,

Age intensity vector Variables
−→τ 0 τ
−→τ 1 τ3
−→τ 2 τ4
−→τ 3 φ

4. Consider the case in which the transitions T1 and T2 has age memory
policy. Then the marking m0 has to remember the enabling times of
both the transitions. Because while coming to the same marking m0,
the IRF’s of successor markings were based on the enabled time of the
disabled transitions. This leads to the following specification,

−→τ 0 = (τ1, τ2)

5. Consider the same scenario as before. We have to remember the en-
abled time τ of the disabled transition . Therefore the successor mark-
ings has to copy this τ . While coming to same marking again this value
is copied to the respective τ in the marking m0. The transition T1 has
the following effect on its successor markings,

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1 τ1
−→τ 2
−→τ 3 τ1
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Similarly the transition T2 has the following effect on its successor
markings,

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1
−→τ 2 τ2
−→τ 3 τ2

Due to the effect of transitions T1 and T2, intensity vector for each
marking is specified as the union of these vectors as mentioned below.

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1 τ1
−→τ 2 τ2
−→τ 3 τ1,τ2

6. During the above process of adding τi to the successor markings, if
transition Ti is enabled in any of the successor markings, then it will
be fired there. Therefore we need not remember the τi from the mark-
ing, where it is enabled again, to all other successor markings.

7. Let us assume the transitions T1 and T2 have age and enable memory
policies respectively. The marking m0 has to remember the enabling
time of transition T1 and T2 until both are fired. If T2 fires then
the marking m0 has to remember the enabling time of T1. Effect of
remembering τ1 to successor markings is explained in case [5]. But
the marking m0 need to remember the τ2 of T2, only for the time,
it is enabled. Therefore there will not be any effect of adding τ2 to
its successor markings. Due to the effect of transitions T1 and T2

intensity vector for each marking is specified as the union of these
vectors as mentioned below.

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1 τ1
−→τ 2
−→τ 3 τ1

8. If a transition is specified as Exponential type of memory policy age,
then it is considered as Exponential of memory policy enable . This
comes from the fact that, exponential distribution is always memory-
less.



3.1. Pre-processing of the Petri nets 33

9. Consider the same example Petri net without the transition T5. Then
we don’t need to remember any of the disabled transitions T1 and T2

though they have age memory policies. Also in this case we need a
single τ for the marking m0. This comes from the argument in this
case, that a transition once disabled will not be enabled in the future.
Therefore we need not remember the enabled time even though the
memory type is age. This makes our making dependent age intensity
vector as,

Age intensity vector Variables
−→τ 0 τ
−→τ 1 τ3
−→τ 2 τ4
−→τ 3 ø

10. No duplicate of supplementary variable is necessary for a marking
dependent age intensity vector. Different markings can have same
disabled transitions. While adding those τi in the successor markings,
if we have the τi already in that marking, then we do not need to add
this τi again.
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Algorithm for finding nearly optimal number of supplementary
variables

With the set of described guidelines, we designed an algorithm that will
compute a nearly optimal number supplementary variables for each mark-
ing. Each such variables are stored as marking dependent age intensity
vector. The specification of the algorithm is followed by the description.
Algorithm Supplementary

Line 01: begin
Line 02: ∀ tangible mi ε ℜ
Line 03: do begin
Line 04: Ti = getTransitions(mi);
Line 05: if (∀ T.MemoryPolicy in Ti = ”ENABLE”)
Line 06: addTransitions(mi,Vi,Ti1);
Line 07: else
Line 08: addTransitions(mi,τi, ∀ T in Ti);
Line 09: end;
Line 10: ∀ (τi) ∈ mi where # (τi) > 1
Line 11: do begin
Line 12: ∀ Ti ∈ (τi)
Line 13: {nextMarking} = ∅;
Line 14: {processedMarking} = ∅;
Line 15: mnext=succ(mi,Ti) ;
Line 16: {nextMarking} = {nextMarking} ∪ mnext ;
Line 17: S = τi-Ti;
Line 18: {processedMarking} = {processedMarking} ∪ mnext;
Line 19: while( #(nextMarking) > 0 && # (S) > 0)
Line 20: do begin
Line 21: mnext=removeFirst{nextMarking};
Line 22: S = {S} - ( ∀ Tnext ∈ (τnext));
Line 23: τi,next = {S};
Line 24: ∀ Tnext ∈ (τi,next);
Line 25: if ( succ(mnext,Tnext) ∩ {processedMarking} = ∅)
Line 26: do begin
Line 27: {nextMarking} = {nextMarking} ∪ succ(mnext,Tnext);
Line 28: {processedMarking} = {processedMarking} ∪ succ(mnext,Tnext);
Line 29: end;
Line 30: end;
Line 31: if # (S) = 0
Line 32: ∀ Tnext ∈ τi,next

Line 33: (τi)∪ τi,next

Line 34: end;
Line 35: return τi ∀ mi;
Line 36: end;
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Line 04 to 09 The algorithm computes the supplementary variables only
for the tangible markings in the reachability graph ℜ. It leaves out the
computation for the vanishing markings, satisfying the guideline No:2.
It gets all the transitions enabled in each marking mi by the function
getTransition(mi). Next, it checks the each transitions memory policy,
for each marking. If all the transitions enabled in the marking mi

have enable memory policy, then it adds only one variable from the
guideline No:3. Otherwise it add one variable for each transition to
the age intensity vector τi for the marking mi, satisfying the guideline
No:1.

Line 10 It process the marking with τi computed from Line 04 to 09, whose
size is greater than one. Because there are more than one transition
enabled in the marking mi.

Line 12 For each such enabled transitions of the marking mi, the algorithm
computes the supplementary variable as follows.

Line 13 and 14 It initializes two empty sets nextMarking and processed-
Marking. These sets, keeps track of the markings to be processed and
markings which already processed for each of the transition in process.

Line 15 The function succ(mi,Ti) returns the successor marking from mi

for the enabled transition Ti.

Line 16 This successor marking mnext is added to the nextmarking, so that
it can be processed for the successive steps.

Line 17 Let S be a set of transitions which are disabled by the currently
enabled transition Ti.

Line 18 Next marking mnext is added to the processedMarking. The al-
gorithm avoids to process the same marking if it is generated in the
successive steps.

Line 19 The condition (S) > 0 implies that, the supplementary variables
of the disabled transitions, are added to successive marking, until it is
fired in the successive markings. The condition checking nextmarking
as empty implies that there are still some successive markings from
the current marking. When this becomes false with other condition
being true then we never reach the marking where we have started.

Line 21 The function removeFirst{nextMarking} removes the first entry in
the set for processing. This is termed as the mnext.



3.1. Pre-processing of the Petri nets 36

Line 22 All the τ from the age intensity vector of this marking is removed
from S. If the marking mnext has transitions which which belongs to
S, then it is enabled in this marking and to generate the successive
marking. Therefore the disabled transition is enabled in marking mi.

Line 23 The vector τi,next holds the supplementary variable for the marking
mnext. By guideline [5]

Line 24 to 30 For each transition enabled from the marking mnext we have
successive markings. We add those reachable markings in both the
nextMarking and the processedMarking, if it is not generated already.
Therefore the processed markings can be tracked from processedMark-
ing. By checking this set, the algorithm add the marking to both of
the sets.

Line 31 to 34 If S is empty, then the marking from where the transitions
are disabled can be reached and enabled again, or the transition is
enabled in the in any of the successive markings while returning to the
marking where it is disabled. For each disabled transition the algo-
rithm will compute age intensity vector for successive marking. Due
to the fired transition in mi, the age intensities of the disabled tran-
sitions has to be remembered by the markings in the successive path.
This is given by τi,next. In other words due to the transition Ti from
marking mi the markings mnext has to remember the age intensities of
the disabled transition. These vectors are combined finally to get the
final marking dependent age intensity vector for each marking.

Line 35 Finally the algorithm returns the age intensity vector τi, for each
marking mi.

We illustrate this algorithm with our study model Petri net. The first
part of the algorithm, line 04 to 09, produces the following result.

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1 τ3
−→τ 2 τ4
−→τ 3 φ

Now it will process only the age intensity vector −→τ 0. This vector has the
capacity greater than one. The algorithm computes age intensity vector for
each marking, line 10 to 28, modelling the possibility of the disabled transi-
tions T1, T2. With T1 as disabled condition, the second part computes age
intensity vector for the successive markings. This will result in the following
vector for each marking.
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Age intensity vector Variables
−→τ 0
−→τ 1 τ1
−→τ 2
−→τ 3 τ1

For the second iteration, it takes T2 as the disabled transition and pro-
duce age intensity vector for the successive marking as follows,

Age intensity vector Variables
−→τ 0
−→τ 1
−→τ 2 τ2
−→τ 3 τ2

The final part of the algorithm,Line 31 to 34, combines all these age
intensity vector and produces a single age intensity vector for each marking.
This is shown below,

Age intensity vector Variables
−→τ 0 τ1,τ2
−→τ 1 τ3,τ1
−→τ 2 τ4,τ2
−→τ 3 τ1,τ2

3.2 Storage strategy

In this section, we describe our second proposal of designing an improved
storage strategy for proxel based simulation. We describe the potential
problems in some of the standard data structures followed by the design of
the proposed approach.

3.2.1 Potential problems in standard data structures

We selected some of the data structures which effectively supports two op-
erations, searching and storing. These are the operations required for the
implementation of the proxel based simulation. These operations should be
quick enough for storing and searching a proxel in the data structure.

Array

In this case, we use a single dimensional array of capacity N. The range of
the index of the array is [0..N-1]. The key is computed for the given proxel
in the specified range. The probabilities are added if there is a proxel in
the computed index while searching for a proxel in the array. Otherwise
the proxel is placed in the computed index. Therefore given a proxel key,



3.2. Storage strategy 38

searching the proxel takes single access O(1) in the data structure.

The main disadvantage of this approach is designing an array, such that
it can hold all the possible values produced as the key of the proxels. Further
the key should be unique. This requires very large value of N and expensive
key computation. Therefore the array size will become very large and key
computation is expensive in terms of running time.

Dynamic array

This data structure aims to avoid the very large value of N, as discussed in
the previous section. Instead of having fixed N for the array, the capacity of
the array is increased, when the number of stored proxels increases to two
third of the capacity. Increasing array’s capacity includes creating a new
array whose capacity is twice as that old array’s capacity. Then we copy all
the proxels to the new array and we drop the old array.

While copying the proxels to the new array, the key is recalculated ac-
cording to the capacity of the new array. The proxels are placed according
to the newly computed index. Therefore the time required for copying each
proxel will be O(n) where n is the number of proxels in the old array. Proxels
of very high number such as 10E+3 to 10E+6 occurs frequently in this ap-
proach. We also have additional key computation time for each proxel. Even
though it supports searching a proxel in single access, the time required for
copying and recalculating the key affects the running time of this approach
to a very large extent. In particular when the number of proxels is very large.

Multidimensional array

The fastest search for a proxel can be obtained in this approach. We don’t
need to compute a key for a proxel. Consider the study model Petri net,
we have to declare a 5 dimensional proxel array. One for the marking and
other four for the transitions. If there is a proxel containing marking m0

and age intensity vector (2dt,4dt,0,0), then we can search it, by accessing
the location, proxelarray[0][2][4][0][0]. If it is a proxel with marking m2 and
age intensity vector (0,0,5dt,0), then we can search it by accessing proxelar-
ray[2][0][0][5][0].

The disadvantage of this approach is, the wastage of memory space.
Except for the first entry where the index is the marking number, we have
to declare a large dimension for other four entries. This declaration should
be large enough, to hold all the intensity values. Further, we don’t use all the
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declared locations. It is apparent in our study model, that for the marking
m0, [0][*][*][0][0], the last two index will be always zero. This makes the
matrix very sparse resulting in higher wastage of memory.

Binary tree

The binary tree with balancing supports the proxel search in O(log N), even
in the worst case. This is discussed in the earlier sections. Balancing takes
longer time and reduce the performance of this simulation approach to a
large extent. Hence the current implementation uses the unbalanced binary
tree. It performs well for the best case with O(log N) but the worst case for
storing or searching takes O(N).

Further, the important thing to notice is system over head. We use recur-
sion algorithms to process the proxels in a binary tree [Traversing binary trees].
This recursion consumes systems stack memory, especially when the number
of proxels is very large. In the worst case scenario, the system memory is
occupied with the address of (n-1) proxels. When this n is large, this ap-
proach consumes lot of stack memory [David Eck and Bradley Kjel 2004].
This affects the processing time of the proxels and the simulation approach
significantly.

Hash table

Hash table uses the hashing approach described in the fundamentals section.
Searching a proxel in the hash table takes single access if there is no colli-
sions. But the worst case runtime is O(N). This occurs when the hashing
algorithm maps all the keys to the same index.

Efficient usage of hash table lies in the design of the key indexing algo-
rithm. The algorithm aims to distribute the keys evenly. The distribution
here refers to lesser number of collisions. The worst case behavior for this
strategy is same as that of the unbalanced binary tree. Further it is practi-
cally very difficult to design a hash algorithm without collisions.

3.2.2 Storage approach based on array and hashing

This storage strategy aims to reduce the run time and memory requirement
for the proxel based simulation. The first part describes the design and the
second part deals with the operations. We use the same Petri net shown in
the Figure 3.1 for illustrating proposed implementation.
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Storage Design

The implementation of the proposed approach is based on the array and
hashing techniques. First we define an array with capacity equal to the
number of markings. The index i of the array corresponds to the i of the
marking mi. We name this array as marking array. Each entry for this array
contains another array of capacity two. We call this array as time step ar-
ray. The index 0 in this array contains the proxels for the current time step.
The index 1 of the time step array, is used to store the proxels generated
for the next time step. We define index 0 as icurrent and 1 as inext similar
to BTcurrent and BTnext in the binary tree of the current implementation.
The index icurrent and inext hold another array respectively. This is used to
store the proxels. We name this array as proxel array. The initial proxel
is stored in the proxel array of icurrent whose marking array’s index is zero.
This is because the initial proxel contains the marking m0.

Figure 3.4: Storage structure at time step 0

Estimating proxels for next step

Before starting the proxel generation, we calculate the number of proxels
generated for the next time step from the reachability graph. In our case,
we have one proxel containing marking m0. Therefore, next step will have
two proxels containing the marking m1 and m2. Also we have another proxel
which contains the same marking m0. We declare the proxel array in inext

for each marking with this estimation. In other words it possible to predict
the number of proxels generated for each marking for the next time step.
This number comes from the number of transitions enabled in the proxel’s
marking.

We use this estimation as the capacity of the proxel array for each mark-
ing in inext. We start processing the proxel in icurrent for each marking. We
have only the initial proxel we process that proxel. This is shown in the
Figure 3.5
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Figure 3.5: Proxel estimation

Key Computation

The proxel which contains the marking m1 is processed. Updating the age
intensity vector is done according to the transitions enabling conditions and
memory policy. The key for the proxel is computed only with the age in-
tensity vector. The data structure place the proxel in the corresponding
marking array which makes the key computation free from marking. The
implementation of the proposed approach uses the CBU hash function. This
computes the hash value xi, from the proxel key (τ i). The index of the proxel
array is computed from the hash value by the following function:

h(τi) = (xi) mod Ni (3.1)

The proxel is stored in the computed index. The Ni used in the hash
function is the estimated capacity of the proxel array, for the corresponding
marking mi, in inext. The above process is repeated for the proxel contain-
ing marking m2 and the same marking proxel m0. This is shown in the
Figure 3.6.

Proxel search

Given a proxel, searching takes single access. The index of the proxel array
is computed by the hash function with the age intensity vector. The index
of the proxel array in inext, of the corresponding marking array is searched.
If a proxel is there with same age intensity vector, then the probabilities are
added to the existing proxel. Otherwise the proxel is stored in the computed
index of the proxel array. Therefore in best cases, runtime for searching a
proxel in the proposed implementation takes O(1).
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Figure 3.6: Storage structure at time step dt

Simulation

After the above steps, we have the probabilities of different markings after
first time step. The steady state probability or the probability at the end of
the specified time, for each markings of the Petri net, is obtained from this
simulation approach as follows:

For each step, process all the proxels in the proxel array of icurrent. Once
this process is over then remove the proxel array in icurrent and make the
inext’s proxel array as icurrent’s proxel array for the next time step.

Figure 3.7: Interchanging the proxel arrays

For next step, repeat the procedures followed from ”proxel estimation”
to ”simulation” until specified time has been reached.
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Figure 3.8: Storage structure at time step 2dt

Collision handling

The proxel search method has a best case running time of O(1). This is
possible when there are no collisions. This is shown in the Figure 3.8. Col-
lisions refers to two or more proxels containing same marking but different
age intensity vector with same hash value. Therefore we are forced to store
them in the same index of the proxel array. A bin is created in the collision
index. This bin is also an array. The proxels having same computed index
for the proxel array are stored in the bin. This is shown in the Figure 3.9

The proposed implementation adopts linear probing technique for search-
ing the proxels in the bin. This has the following steps

1. probing or pruning each collision proxels by checking its age intensity
vector.

2. If one such proxel exist during the step (1), whose age intensity vec-
tor is same as that of the searching proxel, then the probabilities are
added.

3. If step (2) is not satisfied then the searching proxel is placed at the
end of the bin.

In worst cases, time taken to search a proxel is O(n), where n is the
number of collision proxels. This n is a number of proxels which belongs
to the marking of the marking array. But in the unbalanced binary tree
and hash tables, O(n) corresponds to the total proxels stored in the data
structure. But still if we don’t have any collisions, the best case running
time for the proposed approach is O(1).

While processing the proxels in the proxel array of icurrent, the proxels
stored in the bin is processed one by one.
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Figure 3.9: Collisions in the storage structure

3.2.3 Role of hashing in the proxel search

The worst case runtime for searching a proxel is proportional to the number
of collisions which is based on the efficiency of the hashing method employed
for hashing the key. The runtime of the hashing method is proportional to
the length of the proxel key. The implementation of the current approach
uses the marking and the age intensity vector as the key. For an example,
if we have a proxel specified as,

P=( m0,(τ1,τ2,τ3,τ4),t,pr )

The key is computed by combining m0 with τ1,τ2,τ3,τ4. But in the pro-
posed implementation, we use only (τ1,τ2) as the marking dependent age
intensity vector for m0. The proposed design has separate proxel array for
each marking. Therefore the implementation needs (τ1,τ2) as the argument
for computing the key. Hence we reduced three entities for the key compu-
tation. This reduces the run time of the whole approach significantly. In
particular, when the number of transitions is large and our nearly optimal
supplementary algorithm removes more irrelevant entries.

It is nearly impossible to design a hashing technique, with one to one
relation. This relation maps different proxel key to different value. In other
words, it is very hard to design a hashing technique, without collisions.
The design of the algorithm lies in reducing the collisions. Reducing the
collisions, increases the time complexity of the hashing technique. If the
collisions are very less then proxel search can be achieved in nearly O(1).
This reduces the proxel search time and the run time of the simulation
approach. But increase in the time complexity makes the hashing technique
expensive in terms of running time. We reduce the proxel search time but
this makes key computation time expensive. Hence a trade off is necessary
between the time complexity of the hashing technique and proxel search
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time. We adopted the CBU hashing algorithm based on these trade off in
the proposed implementation.

3.2.4 Significance of the proposed storage design

With the hashing based array implementation, we reduce the key length
by removing the marking from the key. We include only the reduced age
intensity vector. The number of bits in the key is reduced. This makes the
key computation faster. This faster key computation makes the proxel key
comparison faster. Further we use hashing technique to store the proxels. In
best case, we can search a proxel in a single access. Even in the worst case,
we search proxel in a linear time O(n). This n includes only the number
of proxels containing same marking. The binary tree implementation in the
existing approach has a best case running time of O(log N) and worst case of
O(N). Here N refers to the total number of proxels, irrespective of marking
in the data structure.

Approach Best case Worst case

Existing approach O(log N) O(N)
Proposed approach O(1) O(n)

3.3 Evaluating the proposed approach

We suggest two ways for improving the current implementation. The pre-
processing of the Petri nets makes the reachability graph generation an
automated process. Further it gives a marking dependent age intensity vec-
tor. This approach reduces the memory and run time requirements for the
proxel simulation approach. Therefore we evaluate this preprocessing ap-
proach with runtime and memory in the experimentations.

The second way is an improvement concerning the usage of data struc-
ture in the current implementation. The word ”improvement” here again
refers to runtime and memory requirements. This proposal aims to reduce
the proxel search time and the amount of memory utilized. Therefore we
evaluate the storage design with the runtime and memory. The important
factor which affects the proposed implementation is the number of collisions.
We also evaluate the proposed approach with the number of collisions.

3.4 User Interface

We designed a user friendly interface for the implementation of proxel based
simulation method. We also present the simulation results in a graphical
format. This enables the user to visualize the behaviour of model over time.
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Here we describe the design procedures, modules and instructions for using
this interface.

3.4.1 Design of the interface

The interface has three modules. Java Swings [Java Swings examples 2004]
is used for the implementation. We present these modules and afterwards
we describe their construction. The modules are named according to the
function.

1. Preprocessing module

2. Simulation module

3. Results visualization module

Figure 3.10: Software modules for proxel based simulator

Preprocessing module : The function of this module is to preprocess the
Petri nets. As we have described in the previous sections, this process
has two functions. First we generate reachability graph from the Petri
net afterwards we find the marking dependent age intensity vector.
Therefore we designed two functions for these process.

The function,”reachability graph generation”, will take the input Petri
net. The model is exactly defined by the specification file for a Petri
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net. We extract those information from input specification and store
them in the appropriate data structures. The data structure is used
in a way such that the preprocessing does not take longer time for this
process. This function includes the reachability algorithm for gener-
ating reachability graph from the Petri net in the form of reachability
matrix. Another function finds marking dependent age intensity vec-
tor. It will take the reachability matrix generated in the above step.
This function includes the algorithm to compute nearly optimal sup-
plementary variables. Finally it define the marking dependent age
intensity vector.

The final output of this module is composed of results from the two
functions along with some specifications from the Petri net. These
specification includes discretisation parameter dt, simulation time t
and the details about the transitions.

Simulation module We take the output from the preprocessing module
here to start the simulation. We keep track of the probability values of
each marking at every time step. We store these values in a separate
text file. We do this for two purposes. First we can use this text file for
later analysis. Next, we are going to visualize the results, in particular
the probability values for each marking at each time step based on this
file.

Results visualization module The main aim of this module is to vi-
sualize the behavior of the model over time. We present this in a
two dimensional graph, where the x axis corresponds to the simula-
tion time and y axis corresponds to the probability values for each
marking. We also provide this visualization in a JPG picture format
[Java Graph 2004 ] . For later analysis, we not only have the text file
with probability values but also an image showing its behavior.

3.4.2 Instructions for usage

In this section we provide the instructions to use our interface. The Fig-
ure 3.11 shows a screen shot of our interface. We have six buttons at the
top. The first button ”Open Petri net” is a file browser which is used to
specify the location of the Petri net file. The second button ”Save Reach-
ability” is used to specify the location where the reachability graph of the
petri net should be stored. The third button ”Generate” will generate the
reachability information and store in the file specified in the second menu.
This information also contains the marking dependent age intensity vector.
The fourth button ”Save Results” is used to create a file which stores the
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probability values for each marking. The fifth button ”Simulate” starts the
simulation process. When the process is completed, we inform the user with
a pop up message. The sixth menu ”Graph” will visualize the probability
results form the text file where we store the probability values. We also
provide a button at the bottom of the interface called ”Auto Simulation”.
This is a button which automates all of the six button’s process. We specify
only the location of the Petri net file. It will shows the user with the prob-
ability visualization, for each marking. We use temporary files to hold the
intermediate values.

Figure 3.11: Proxel based Simulator

Figure 3.12 illustrates the visualization of probability values. There is
also the marking interpretation at the bottom of the graph.
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Figure 3.12: Proxel based Simulator

3.5 Overview of the proposed approach

We are using stochastic Petri nets to model the real word entities. We de-
fine the specification of Petri nets. Afterwards we construct the reachability
graph for the Petri net, which consists of possible discrete states of the
model, in the form of markings. After extracting this information we use
an algorithm to compute the age intensity vector for each marking. This
algorithm is based on the guidelines which we have defined for this pur-
pose. Therefore we refer this process as, finding nearly optimal number of
supplementary variables for each marking. With these information we start
our simulation approach. We designed an improved storage strategy based
on the hashing and arrays for proxel based simulation. The implementa-
tion aims to reduce the time required for searching a proxel in the data
structure. Finally we present the simulation results in a user friendly way.
The proposed implementation has its own limitations. They are stated as
follows:

Petri net specification

The implementation of the proposed approach works on the Petri net spec-
ification file. We defined the model definition. This is not a standard defi-
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nition. We need a common information interchange format. This format is
independent of specific tools and platforms. If we can read this format, in
our approach, then we do not restrict the user to know our definition. Petri
Net Markup Language can be used for this purpose.

Boundedness

The reachability graph is constructed based on the assumption of the bounded
condition of the Petri net. Petri net is said to be bounded, when the set
containing all the possible discrete states, reached by the model is finite. In
other words, the markings generated by the reachability graph is finite.

This forms the second limitation. We are starting the simulation after
computing the reachability graph. If the markings are infinite, then we can-
not start our implementation.

Optimality for supplementary variables

We defined our own guidelines for the optimality of supplementary variables.
Our algorithm to find marking dependent age intensity vector works only
for these guidelines. Hence we call this process as finding nearly optimal
number of supplementary variables for each marking.

These guidelines give rise to third limitation. We are able to compute age
intensity vector based only on these guidelines. Still we have supplementary
variables which are not relevant to the corresponding markings in the age
intensity vector.

Level of vanishing markings

During simulation, if we encounter a proxel containing a vanishing marking
then we find the successor proxel containing tangible marking. We have this
as a single level. We assume that a vanishing marking’s successor is always
a tangible for the proposed implementation.

We have our third limitation as lack of support for multi level vanish-
ing marking. This multi level refers to the situation in which a vanishing
marking has a series of vanishing marking to reach a tangible marking.

Proxel estimation and computation time

Consider the following scenario during proxel processing. Suppose the ca-
pacity is estimated as N, in the previous step. The data structure stored
only (N-k) proxels in the proxel array. That is k proxels were combined,
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during the proxel generation process. We iterate N times during the next
step to process proxels in the proxel array. While iterating, if we encounter
a proxel then we will process, otherwise we move to the next iteration. The
same case applies to proxel threshold and collisions.

This forms our fourth limitation of the proposed approach. In particular
if the proxel combination, threshold and collisions are more, we waste com-
putation time for simply iterating over the empty index of the proxel array.

Proxel estimation and memory requirement

During simulation, we estimate the number of proxels for the next step. For
example, if there are three markings and we estimated N0, N1, N2 proxels
for each marking. This Ni will be the capacity of the proxel arrays. We
allocate memory for three proxel arrays with N0, N1, N2 as the capacity of
the arrays. All the allocated memory is not used by the proxels. Some of
the memory space is left unused. This comes from three conditions. Proxel
combination, threshold and collisions. The collisions not only leave a mem-
ory space but also creates new space in the bin.

This forms our fifth limitation. We are unable to estimate the exact
number of proxels. The proxel collision and threshold conditions are difficult
to predict. On the other hand the proxel combination is possible to know
in advance. But our approach does not have this functionality.



Chapter 4

Experimentations and

Results

In this chapter we present experimentation results of our implementation.
The experiments related to preprocessing Petri nets compare the conse-
quences of preprocessing in proxel based simulation. The experiments re-
lated to storage strategies compare the effects of the different data structures
used in proxel based simulation. The experiments are carried out with the
following setup.

• CPU-Mobile AMD AthlonTM XP 2000+ of speed 1.67 GHZ

• 512 MB RAM

• Microsoft r© Windows r© XP operating system

• Java 1.4.2

• JVM memory 320 MB

• Stack size of 40 MB for Binary tree implementation.

The experiments are classified as follows:

• Preprocessing experiments which analyze the performance criteria, for
the array with hashing and the binary tree implementations

• Storage strategy experiments which analyze the performance criteria,
for the different implementations

• Experiments which measure the performance criteria, of the current
approach(Binary tree without preprocessing) with proposed approach(array
using hashing with preprocessing)

52
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4.1 Preprocessing

The effects of preprocessing in the proxel based simulation can be measured
with computational time and the memory utilization. The experiments in
this section are based on analysis of these parameters with respect to storage
strategies, which includes the implementations of the binary tree and the
proposed data structures. The Petri net used for the experimentations is
shown in the Figure 4.1. The transitions are described below.

• T1 and T2 are uniformly distributed in the interval (1.5,3.3) with age
policy

• T3 and T4 are also uniformly distributed in the same interval (1.5,3.3)
but have enable memory policy.

• T5 is deterministic with 0.3 and contains enable memory policy

• t=100 and dt=0.5

Figure 4.1: Petri net used for experimentations

4.1.1 Binary tree

The results from the Figure 4.2 compares the computational time of the bi-
nary tree implementation for proxel based simulation approach, before and
after preprocessing. We plot the values of simulation time against the run-
time.

The curve ”constant size” shows the runtime without preprocessing. The
age intensity vector includes an entry for each transition in the Petri net.
The Petri net used in this experiment has five transitions. Therefore the
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Figure 4.2: Effect of preprocessing in runtime of a Binary tree

number of supplementary variables in the age intensity vector is always five.
After preprocessing the Petri net, algorithm which computes the nearly op-
timal supplementary variables removes three irrelevant variables from each
marking. The runtime, after preprocessing is shown with the curve ”nearly
optimal”. From this experiment we conclude that, our preprocessing pro-
posal improves the runtime of the current approach although not signifi-
cantly.

The reasons for the above mentioned results are stated as follows. The
binary tree implementation stores the proxels by computing the key. The
key of a proxel is computed from the marking and the age intensity vector.
The key computation time is proportional to the length of the key. The
length of the key decreases with decrease in the number of entries in the
age intensity vector. This reduces the key computation time. The search
in the binary tree, for the occurrence of a newly generated proxel needs the
comparison of the keys which means comparing each bit of the new proxel’s
key with the proxels in the binary tree. The time needed for this is pro-
portional to the length of the key. After preprocessing, the key length is
reduced. Thus it improves the computational time of the approach.

The results from the Figure 4.3 compares the memory usage of the proxel
based simulation approach before and after preprocessing. We plot the sim-
ulation time step against memory allocated for each step.

This results shows that, after preprocessing there is a significant im-
provement in the memory requirement. The curve ”nearly optimal” has
lower memory requirements then the ”constant size” one.
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Figure 4.3: Effect of preprocessing in memory requirement of a Binary tree

The reason for this improvement are stated as follows. By removing
each irrelevant supplementary variable in the age intensity vector of the
corresponding marking, we save 32 bits for each proxel. The age intensity is
a float value. Java allocates 32 bits for each such entry. We used the same
Petri net involved in the run time experiment. The preprocessing removes
three entries from each marking. So we saved 96 bits for each proxel. When
time increases, the number of proxels generated are more. Therefore there
is significant reduction in the memory.

4.1.2 Array with hashing method

We carried the same experiments explained in the previous section, for the
proposed implementation of the array based on the hashing technique.

Figure 4.4 shows the computational time before and after preprocessing.
We use the same terminology, ”constant size” and ”nearly optimal” for the
two approaches. We use the same Petri net used in the previous section for
this experiment.

From the results, after preprocessing, the computational time for the
simulation approach is reduced. The reason for this improvement is same
as explained in the previous section.

Figure 4.5 shows the amount of memory required for the array based
implementation of the proxel based simulation, before and after to prepro-
cessing.
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Figure 4.4: Effect of preprocessing in runtime of the array

Figure 4.5: Effect of preprocessing in memory requirement of the array

The result which we got for this experiment, is not one which we ex-
pected. We expected the memory requirements after preprocessing, will be
always less than its competitor. In order to understand this unexpected
behaviour, the number of collisions is analyzed for each time step. This is
shown in the Figure 4.6. We plot the number of collisions for each time step
during proxel based simulation, after preprocessing.

The key of a proxel is computed from the age intensity vector. We use
the hashing technique to compute the index from the key. The proxel is
stored in the computed index. Collisions are caused by two or more proxels
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Figure 4.6: Effect of preprocessing in collisions of the array

with same computed index but different age intensity vector. This collision
depends on the key length and the estimated capacity (Ni) of the proxel
array. Reduction in the key length increases the number of collisions. For
each such collision a new space is created in the bin of the proxel array.
The collision proxels are stored there. At the same time the position of
the proxel in the proxel array is vacant. Larger the collision, larger the
unused allocated memory will be . This makes the memory requirements
larger. This is clear if we analyze time steps form 225 to 275. Here the num-
ber of collisions are fewer without preprocessing. The key consists of five
supplementary variables from the age intensity vector. Hashing technique
produces less number of collisions for the key containing five supplementary
variables compared to the key, which contains two supplementary variables.
If we analyze the same time step intervals form 225 to 275 in the Figure 4.5,
the memory requirement is smaller for ”constant size” compared to ”nearly
optimal”. The same argument applies for time steps from 425 to 475. At
these time steps, the unused allocated memory is more when compared to
the saved memory. The memory saving comes from the removal of irrelevant
supplementary variables.

The irrelevant supplementary variables in the age intensity vector in-
creases the run time but reduces the number of collisions during proxel
storage. The Figure 4.7 shows the results of runtime for the proxel based
simulation with respect to the number of irrelevant supplementary variables
such as three, four, five, six, seven for each marking.

On an average if there are three irrelevant supplementary variables in
each marking, its computation is more than that of the nearly optimal case.
Figure 4.8 shows the memory requirements for each of the case. The irreg-
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Figure 4.7: Effect of irrelevant supplementary variables in runtime.

ularity in the memory requirement comes from the number of collision of
the hashing technique. Higher the collisions, larger the amount of unused
memory is.

Figure 4.8: Effect of irrelevant supplementary variables in memory.

We are using object data type in Java (equivalent to pointers in C ) for
storing the proxels. The amount of memory required for these data types
are not the amount of memory utilized. Therefore the required memory
is not the used memory. The required memory is less after preprocess-
ing and increases with the number of irrelevant supplementary variables
for each marking. The amount of unused memory will be reused again
[Java HotSpot VM Options 2004].
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Our proposed storage strategy behaves in the same way as that of the
binary tree. The key computation time is made shorter with preprocessing.
The memory requirements varies with the number of collisions. The length
of the key determines the number of collisions in this case. The smaller num-
ber of bits in the key, then greater the number of collisions and the memory
requirements are. The same scenario decreases the key computation time
and the whole computation time of the simulation approach.

4.2 Proposed storage strategy

This section describes the experimentations related with the proposed stor-
age strategy. The runtime and the memory requirements of the array im-
plementation with hashing method are measured and compared with the
binary tree implementation, for evaluating the proposed design.

4.2.1 Key computation

The index for storing a proxel in the proxel array is computed form the
key. The array implementation use only the age intensity vector. The sup-
plementary variables constitute the age intensity vector. We use hashing
technique for indexing the key. The primary goal of a hashing technique
is to reduce the number of collisions. The complexity of the hashing tech-
nique is measured in terms of the number of machine instructions required
internally for the technique. In order to find the best hashing technique
for the array implementation, We analyzed the following hash techniques
[Hash Functions for Hashtablelookup 2004 ].

• CBU hash

• Java hash

• Additive hash

• Rotative hash

• One-at-a-time hash

• 64 bit-BUZ hash [64-bit Hash function].

Figure 4.9 shows the results of the number of collisions for each time
step during proxel based simulation, with respect to different hashing tech-
niques. From these experiments we conclude that increasing the complexity
of the hashing technique, decreases the collisions of the proxels. CBU hash
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is the simplest of hashing method mentioned above. Therefore the number
of collisions is higher for this method.

Figure 4.9: Proxel collisions for different hashing techniques.

Figure 4.10 shows the runtime of the simulation approach with respect
to different hashing techniques.

Figure 4.10: Simulation runtime for different hashing techniques.

From these results we conclude that increasing the complexity of the
hashing technique, increases the simulation runtime. The higher runtime is
due to the higher key computation time. A complex hashing method takes
more time for index computation from the key. This produces well dis-
tributed index from the keys which results in minimum number of collisions
at the expense of larger computation time. Further from these experiments
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we observe that, time taken for linear probing the collision proxels is less
when compared to the time taken for producing the well distributed index
form keys.

4.2.2 Comparing storage strategies

Before preprocessing

Figure 4.11 shows the comparison of runtime with respect to the binary
tree and array implementations, without preprocessing. The size of the age
intensity vector is the same for both strategies and it includes all of the
transitions of the Petri net.

Figure 4.11: Comparison of storage strategies with respect to runtime.

From these results we observe that, implementation of the proposed stor-
age strategy based on array and hashing for proxel based simulation has
shorter computation time, when compared with binary tree implementa-
tion. In the best case, the proxel search takes single access in the array
based implementation. The binary tree for the same case, the searching
takes logarithmic time.

Consider the worst case scenario. For the array based implementation
all the proxels are indexed to the same location of the proxel array. The
bin contains all the proxels of the marking mi. Therefore the proxel search
will take O(ni) where ni refers to the number of proxels stored in the proxel
array of the marking array mi. The binary tree implementation for the same
case, all the proxels are always added either as left child or right child. If
there is 1000 proxels with the searching proxel as the lower most proxel,
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then the search will take 1000 access to reach that proxel. Therefore the
proxel search takes O(N ) where N refers to the total number of proxels in
the tree.

The results for the amount of memory required for different implementa-
tions are shown in the Figure: 4.12. It can be seen that the array implemen-
tation has lower memory requirement than the binary tree implementation,
most of the time.

Figure 4.12: Comparison of storage strategies with respect to memory re-
quirement

In the array implementation, after processing a proxel, it is removed
from the array. The binary tree keeps the proxels until all of them are pro-
cessed. Removing a proxel causes rearrangement of proxels in the tree which
increases the simulation time.The proxel generation increases the memory
requirements in both array and binary tree implementations. The memory
is freed after processing a proxel in the former but not in the later.

After preprocessing

Figure 4.13 shows the computational time of the proxel simulation approach,
after preprocessing with respect to two storage strategies. Each marking of
the Petri net is associated with marking dependent age intensity vector. The
reasons for shorter computation time of the array based implementation is
same as explained in the previous section. The proxel search takes less time
compared to binary tree.
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Figure 4.13: Comparison of storage strategies with respect to runtime.

Figure 4.14 shows the memory requirements for same case. The array
based implementation has higher memory requirements because of the fol-
lowing reasons:

Proxel collisions: Collision proxels create new space in the colliding bin
and leave space in the memory. They do not use the memory allocated in
the proxel array.

Proxel combination: This creates the over estimation of the number of
proxels. If a proxel combines with another proxel by adding its probability,
then the corresponding space in the allocated memory is void.

Probability threshold: The approach discard proxels with probabilities
less than the threshold value. This also creates unused memory in the same
way as mentioned above.
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Figure 4.14: Comparison of storage strategies with respect to memory re-
quirement.

4.3 Existing approach vs Proposed approach

This section compares the pure old approach with the proposed new ap-
proach. The former uses the binary tree implementations for proxel storage
without preprocessing. The later uses the array implementation for proxel
storage with preprocessing.

Figure 4.15: Comparison of existing strategy with proposed strategy based
on runtime

Figure 4.15 shows the computational time taken for the proxel based
simulation with respect to the two implementations. The results revel that
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the runtime of the array implementation is shorter than binary tree imple-
mentation. This is for two reasons. First one is shorter proxel search time,
which is discussed in the previous section. Second one is reduced key com-
putation time. The key for the proxel consists of only the nearly optimal
supplementary variables. In the current implementation, the key contains of
all the supplementary variables and the marking. Increase in the key length
increases the key computation time and key comparing time during proxel
generation and search respectively.

Figure 4.16: Comparison of existing strategy with proposed strategy based
on memory requirement

Figure 4.16 shows the amount of memory needed for the proxel simula-
tion at each time step for the implementations of the old and new approach.
Most of the time, the array implementation has lower memory requirements
than the binary tree implementation. Apart from removing the each proxel
after processing, we also save 32 bits for each irrelevant entry of a sup-
plementary variable. In some cases the existing implementation has lower
memory requirements than the proposed implementation. They occur when
the unused memory is greater than the memory savings in the array based
implementation. More detailed experiments are made with other Petri nets
to observe the runtime and memory requirements. Figure 4.17 shows an-
other Petri net. The tokens in the Petri nets are increased for each time step.

• All transitions are uniformly distributed in the interval 7.0 to 9.0

• All of them belongs to age memory policy

• t=50 dt=0.25
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Figure 4.17: Example Petri net with three places

Figure 4.18 compares the computational time and the amount of memory
needed for both storage strategies during proxel based simulation with one
token in the Petri net. Therefore the number of markings of the Petri net is
3. There is no significant difference in the runtime but the memory of the
array based implementation requires higher memory because of the proxel
collisions and combinations.

Figure 4.18: Comparison of storage strategies with one token in the Petri
net

Figure 4.19 compares the runtime time and the memory requirement for
both storage strategies during proxel based simulation with two tokens in
the Petri net. Therefore the number of markings of the Petri net is 6. There
is runtime of the array based implementation has shorter running time. The
memory of the array based implementation requires higher memory in few
time steps because of the same reason mentioned above.

The experiments are made with the same Petri net with 3 , 4 , 5, 6
tokens. Figures 4.20, 4.21, 4.22, 4.23 show the comparisons. In each of the
case the number of markings increases but in all the cases the array based
implementation has very shorter running time. The amount of memory
needed for the array and binary tree implementations are also shown.
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Figure 4.19: Comparison of storage strategies with two tokens in the Petri
net

Figure 4.20: Comparison of storage strategies with three tokens in the Petri
net

Figure 4.21: Comparison of storage strategies with four tokens in the Petri
net

Figure 4.22: Comparison of storage strategies with five tokens in the Petri
net
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Figure 4.23: Comparison of storage strategies with six tokens in the Petri
net

In all the experiments, the computational time of the array with hashing
based implementation is shorter than the binary tree implementation. The
memory requirements are slightly higher in few cases. From these experi-
ments we conclude that, by having slightly higher memory requirements, we
have achieved shorter runtime for this simulation approach.



Chapter 5

Conclusion and Future Work

This chapter describes the summary of the entire thesis with the contribution
of the proposed approach. It is followed by the conclusion of the thesis and
suggestions for improvement.

5.1 Summary

Preprocessing aims at automating the implementation of the proxel based
simulation approach. This processes the Petri net and extracts the reachabil-
ity graph for the proxel based simulation approach. The previous implemen-
tation was based on the reachability graph from the Petri nets. Therefore
our first goal was to provide the current implementation with an automated
generation of the reachability graph from the Petri net. The existing imple-
mentation is based on the constant size age intensity vector which needs a
separate variable for each transition in the Petri net. This increases the key
length and the memory requirements for each proxel. Therefore, the key
computation time and memory requirements are higher during searching
and storing a proxel. To overcome the above problem the proposed imple-
mentation defines marking dependent age intensity vector which defines the
dimension of the age intensity vector.

The array implementation using a hashing technique has been suggested
as an improved storage strategy for storage. We discussed the worst case
and best case time complexity for array and binary tree implementations.
The array structure supports the proxel search and inserts in a nearly con-
stant access time. Therefore the new storage structure contributes to the
current approach with shorter time for proxel search and insert operations.
Further it avoids the recursive algorithms in the existing approach. This
recursion is used for traversing binary trees in the current implementation.

69
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5.2 Conclusion

A new approach to improve the design, storage and automation for the
proxel based simulation has been developed. This approach generates the
reachability graph from the Petri net and define the marking dependent age
intensity vector required for proxel based simulation. Apart from automa-
tion, the implementation of this new approach reduce the required memory
and computation time in the proxel based simulation. It saves memory by
removing irrelevant supplementary variables from each marking. It saves
time by making number of bits in the proxel’s key smaller which is com-
puted for storing the proxel in the data structure. Extensive experimental
results have confirmed these results.

A new storage strategy for storing the proxels in the proxel based simu-
lation has been designed. The data structure used has shorter running time
for proxel based simulation than the existing implementation. However the
memory utilization of the current implementation outperforms the new de-
sign in few cases but it is compromised with shorter running time of the
new design. The improved space and time complexity of the new design are
useful for the Petri nets containing number of discrete states. The experi-
mental results have confirmed the theoretical results. They also have shown
that the runtime of the proposed implementation is shorter than the exist-
ing implementation. Even though the memory requirement of the proposed
implementation is larger in some cases, experimentations show only smaller
differences. The proposed implementation achieves shorter runtime at the
expense of slightly higher memory.

5.3 Future work

Every research work has a room for improvement. Even though the pre-
sented approach yields promising results, it can be improved to get better
design and results than the proposed approach. We present some proposals
in the following section, to improve the proposed approach.

Petri net specification: In the limitations section of the proposed design,
we described the usage of common information interchange format.
Since our motivation is to construct a general purpose proxel based
simulator, it has to include a parser, to parse the Petri net specifi-
cation from the Petri Net Markup Language. This removes our own
specification of the Petri net [Jonathan Billington 2003].

Boundedness The current implementation of the proxel simulator works
only for the bounded Petri net. Therefore it has to check and inform
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the user that the Petri net is unbounded. The current implementation
does not have this checking functionality. An algorithm to test the
boundedness of the Petri net has to be included in the preprocessing
step. Further the proxel based simulation does not have the bound-
edness limitation. Only the current and the proposed implementation
lacks in supporting the unbounded Petri nets. Approaches which can
handle unbounded Petri nets in proxel based simulation will improve
the current and proposed approaches.

Proxel estimation The proxel estimation calculates the number of proxels
for the next step. This takes only the number of enabled transitions.
This allocate more memory for the proposed storage design. This
estimation should include other factors such as proxel combination
and threshold. If it is possible to determine the number of collisions
in the next step, then that can be included in the proxel estimation
process.

Proxel reusability We throw the proxels away from the memory after it
is processed. But the same proxel can be generated after few steps. If
we are able to keep track of the proxel and its successors then we can
use the these proxels by recalculating the probabilities. Tracking all
the proxels requires very high memory. Some tradeoff should be made
in keeping the proxels in the memory for reusability. This can improve
the running time of the simulation to a large extent but memory trade
off needs more study.

Proxel based simulation is a very new approach for analyzing stochastic
models. Even though the approach has a number of advantages, the imple-
mentations have limitations. This new approach needs further studies and
research work for utilizing the maximum potential. With its full function-
ality, it might become one of the best approaches for certain applications in
the simulation industry.
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