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Abstract

The treatment of tangent curves is a powerful tool for analyzing and visual-
izing the behavior of vector fields. Unfortunately, for sufficiently complicated
vector fields, the tangent curves can only be implicitly described as the so-
lution of a system of differential equations.

In this work we show how to compute the curvature of tangent curves and
discuss its usefulness for analyzing and visualizing vector fields. In particular,
we investigate the curvature behavior around critical points. We show that
the curvature of the tangent curves of a 2D vector field and its perpendicular
vector field uniquely describe the vector directions in the vector field. We
will also describe special curvature properties of linear vector fields in 2D.

Applying the ideas of vector field curvature to vector fields over general
parametrized surfaces, we are able to compute the curvature of particular tan-
gent curves on a surface, such as contour lines, lines of curvature, asymptotic
lines, isophotes and reflection lines. For special tangent curves, we introduce
”thickness” as another characteristic measure. We discuss the application of
the curvature of tangent curves on surfaces as a surface interrogation tool.

Finally, using the concepts of curvature of tangent curves, we deduce
geometric conditions (necessary and sufficient) for G3 continuity of surfaces.
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Chapter 1

Introduction

The visualization of vector fields has become one of the main topics in sci-
entific visualization: CFD-data is usually given in form of vector fields. One
of the most powerful tools for analyzing and visualizing vector fields is the
treatment of their tangent curves. Unfortunately, for sufficiently complicated
vector fields, those curves can only be described implicitely as the solution
of a system of differential equations.

Although we don’t have an explicit formula for the tangent curves, we
can compute their curvatures in an easy way if we know the vector field and
its partial derivatives. This is the main idea of chapter 2. Also in chapter 2,
we introduce the concepts of perpendicular and rotated vector fields in 2D
and discuss the curvature behavior of their tangent curves.

In section 2.5 we explore the curvature behavior around critical points.
In theorem 1 we will show that the curvature near critical points tends to
infinity – at least for one direction in the vector field or in the perpendicular
vector field. This property will be useful for detecting critical points in the
curvature visualization of vector fields.

In section 2.6 we show that the direction of the vectors in a vector field
are uniquely described by the curvature of the tangent curves of the original
and its perpendicular vector field.

Section 2.7 treats the special case of linear vector fields. For those vector
fields some more characteristic curvature properties apply.
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Chapter 2 ends with a first approach for extending the concept of vector
field curvature to 3D vector fields.

In chapter 3 we discuss the usage of tangent curve curvature as a visualization
technique for vector fields. An assessment and examples for the technique
are given.

In chapter 4 we lay the foundations for expanding the concept of vector field
curvature to tangent curves on general parametrized surfaces. For special
vector fields we introduce the ”thickness” of the tangent curves as another
characteristic property.

In chapter 5 the theoretical results of chapter 4 are applied to particular tan-
gent curves on surfaces. These curves are contour lines, lines of curvature,
asymptotic lines, isophotes and reflection lines. We show how to compute
their curvature, their geodesic curvature, and (if possible) their ”thickness”.
Furthermore, we investigate the conditions for the appearance of critical
points of those curve families. Finally, we discover geometric conditions
(necessary and sufficient) for G3 continuity of surfaces. These conditions are
based on the G2-continuity of lines of curvature and asymptotic lines, and
are formulated in the theorems 5 and 6.

Chapter 6 discusses the application of the curvature of tangent curves on
surfaces as a surface interrogation tool. Examples for a test surface are given.

In chapter 7, open questions for future research are formulated.

The color pictures of the chapters 3 and 6 can also be found at
http://enuxsa.eas.asu.edu:80/˜theisel/ .

2



Chapter 2

The Theory of Vector Field
Curvature

This chapter gives the theoretical background of the entire work. The concept
of vector field curvature is introduced for 2D vector fields, and fundamental
properties are proven. The chapter ends with the treatment of the special
case of linear vector fields and an extension of some properties to the 3D
case.

2.1 Basic Definitions and Notations

Let IE2 be the euclidian plane, equipped with a cartesian coordinate system.
This way a point P ∈ IE2 can be described by two real numbers u, v (Nota-
tion: P ∼ (u, v)). Let IR2 be the associated 2-dimensional vector space. A
map

V : IE2 → IR2 (2.1)

is called vector field. V assigns a vector (vx(P ), vy(P ))T to any point
P ∼ (u, v). We use the notation V (P ) = V (u, v) = (vx(u, v), vy(u, v))T .

The partial derivatives of V are defined as Vu(u, v) = (vxu(u, v), vyu(u, v))
T ,

similar for Vv and higher order partial derivatives. For convenience we as-
sume that the vector field is piecewise analytic, i.e. all partial derivatives of
V are defined and continuous.
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A point P ∈ IE2 is called critical point of V if V (P ) = 0 is the zero vector.

Given a vector field V , we can define its normalized (or direction) vector
field V = (vx, vy)T :

V :=
V

‖V ‖ . (2.2)

(This definition works only for non-critical points. For critical points, V is
not defined.) For a normalized vector field we have V · V = 1 (where ”·”
denotes the usual dot product of vectors). Differentiating this equation in u-
and v-direction yields

V · V u = 0 (2.3)

V · V v = 0. (2.4)

Since we are in 2D, (2.3) and (2.4) give

det[V u, V v] = 0. (2.5)

The partial derivatives of V are perpendicular to V and linearly dependent.

Now we want to introduce the concept of tangent curves of a vector field.

Definition 1 A curve L ⊆ IE2 is called tangent curve (stream line, flow
line, characteristic curve) of the vector field V if the following condition is
satisfied: For all points P ∈ L , the tangent vector of the curve in the point
P has the same direction as the vector V (P ).

Figure 2.1 gives an illustration of this definition.

For every point P ∈ IE2 there is one and only one tangent curve through it
(except for critical points of V ). Tangent curves do not intersect each other
(except for critical points of V ). They do not depend on the magnitudes
of the vectors in the vector field: two vector fields which have vectors of
the same direction (but not necessary of the same magnitude) in every point
produce identical tangent curves. (For instance, the tangent curves produced
by a vector field V and its normalized vector field V are identical.)

Tangent curves play an important role for both analysis and visualization
of vector fields. If the vector field describes the flow of a fluid or gas, the
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Figure 2.1: Vector field and tangent curves around a critical point

tangent curves can be considered as the path of a massless particle in the
flow.

A tangent curve L(t) = (u(t), v(t))T of the vector field V = (vx, vy)T can
be described as the solution of the system of differential equations

du

dt
= vx(u, v) (2.6)

dv

dt
= vy(u, v). (2.7)

Unfortunately, for sufficiently complicated vector fields there is no closed
solution of (2.6) and (2.7): tangent curves are in general not describable as
parametrized curves but only in the implicit form of (2.6) and (2.7).

2.2 Tangent Curves and Curvature

Although we don’t know the tangent curves in a parametric description we
want to ask for geometric properties of these curves. One of the most impor-
tant geometric properties is their (signed) curvature. In order to compute
the curvature of a tangent curve, we need the following

5



Lemma 1 Let V = (vx, vy)T be a vector field, let L(t) be an arbitrary tan-
gent curve in V , and let P ∼ (u, v) be an arbitrary point on L. Furthermore,
let L(t) be parametrized in a way that P = L(t0) and L̇(t) = V (L(t)) for
every t. (L̇(t) denotes the tangent vector of L at t.)
Then we obtain for the second derivative vector of L:

L̈(t0) = (vx · Vu + vy · Vv)(P ). (2.8)

Proof: Appying the chain rule to L̇(t) = V (L(t)) gives

V̇ =
dV

dt
= Vu · du

dt
+ Vv · dv

dt
= vx · Vu + vy · Vv = L̈. ✷ (2.9)

Lemma 1 has the following consequence: in order to get the first and the
second derivative vector of a tangent curve in a point P , it is not necessary
to know the tangent curve itself. It is sufficient to know the vector field V
and its partial derivatives.

If we know the first and the second derivative vector L̇(t0) and L̈(t0) of
the tangent curve in the point P = L(t0), we can easily compute the signed
curvature of L in P :

κ(t0) =
det

[
L̇(t0), L̈(t0)

]
‖L̇(t0)‖3

. (2.10)

This and (2.8) gives

κ(t0) =

(
vx2 · vyu − vy2 · vxv + vx · vy · (vyv − vxu)

)(
P

)
‖V (P )‖3

. (2.11)

We have computed the curvature of a particular point on a particular tangent
curve. Since we know that there is one and only one tangent curve through
every point of the vector field (except for critical points), it makes sense to
give the following

Definition 2 The curvature κ of a vector field V (u, v) is a scalar field over
the (u, v)-domain which contains the curvature of the tangent curve through
(u, v) in the point (u, v) for every point (u, v) of the domain.
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Again we have to mention that κ(V ) is defined only for non-critical points
in V . From (2.11) we can easily deduce the formula of κ(V ):

κ(V ) =
vx2 · vyu − vy2 · vxv + vx · vy · (vyv − vxu)

‖V ‖3
. (2.12)

Since V is piecewise analytic and κ is a scalar field, the partial derivatives
κu and κv of κ (which are scalar fields as well) exist and can be derived by
applying basic differentiation rules to (2.12).

Remark 1: Since the tangent curves do not depend on the magnitudes
of the vectors in V , κ(V ) does not depend on the magnitudes of the vectors
in V as well.

2.3 Curvature of Rotated Vector Fields

In this section we introduce the concepts of rotated and perpendicular vector
fields and investigate their curvature. The results form a foundation of some
properties of vector fields described later.

Given a vector field V and an angle γ, we can produce a new vector field
V [γ]: for every point P the direction of V (P ) is rotated counterclockwise by
γ, and the magnitude remains unchanged:

V [γ] =

(
vx[γ]

vy[γ]

)
=

(
vx · cos γ − vy · sin γ
vx · sin γ + vy · cos γ

)
. (2.13)

V [γ] is called the rotated vector field of V by the angle γ. (See figure 2.2 for
an illustration. )

Let κ[γ](V ) be the curvature of the rotated vector field V [γ]:

κ[γ](V ) := κ(V [γ]). (2.14)

κ[γ](V ) is called the rotated curvature of V by the angle γ .

We consider the special cases γ = 0 and γ = π
2
. For γ = 0 we can compute

κ[0](P ) = κ(P ) by (2.12). We want to call V [
π
2 ] the perpendicular vector field
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Figure 2.2: If the solid arrows denote the vector field V [0], the dashed arrows

denote the vector field V [
π
4 ].

of V and κ[
π
2 ] the perpendicular curvature of V . We obtain from (2.13):

V [
π
2 ] =


 vx[

π
2 ]

vy[
π
2 ]


 =

( −vy
vx

)
(2.15)

V [
π
2 ]u =


 vx[

π
2 ]u

vy[
π
2 ]

u


 =

( −vyu
vxu

)
(2.16)

V [
π
2 ]v =


 vx[

π
2 ]v

vy[
π
2 ]

v


 =

( −vyv
vxv

)
. (2.17)

From (2.15),(2.16), (2.17) and (2.12) we obtain

κ[
π
2 ] =

vx2 · vyv + vy2 · vxu − vx · vy · (vxv + vyu)

‖V ‖3
. (2.18)

For an arbitrary angle γ we obtain from (2.13):

V [γ]
u(P ) =

(
vxu · cos γ − vyu · sin γ
vxu · sin γ + vyu · cos γ

)
(2.19)

V [γ]
v(P ) =

(
vxv · cos γ − vyv · sin γ
vxv · sin γ + vyv · cos γ

)
. (2.20)
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(2.12),(2.18), (2.13),(2.19) and (2.20) yield

κ[γ] = κ[0] · cos γ + κ[π
2 ] · sin γ. (2.21)

Given the curvature and the perpendicular curvature of a vector field, we
can compute the rotated curvature κ[γ] for every angle γ using the simple
formula (2.21).

Now we want to find the extreme values of κ[γ] for all angles γ. This will
be useful for the proofs in the next sections.
Let κmax := max

{
κ[γ] : γ ∈ 〈0, 2π〈

}
and κmin := min

{
κ[γ] : γ ∈ 〈0, 2π〈

}
.

From (2.21) it can be shown that

κmax =

√
(κ[0])2 + (κ[

π
2 ])2. (2.22)

(2.12), (2.18) and (2.22) yield

κmax =

√
(vx · vyu − vy · vxu)2 + (vx · vyv − vy · vxv)2

‖V ‖2
. (2.23)

Since κ[γ+π] = −κ[γ], we obtain

κmin = −κmax. (2.24)

2.4 Alternative Notations of Vector Field

Curvature

After showing how to compute the curvature κ of a vector field, we want
to introduce some alternative (and sometimes easier) expressions of κ.

We can describe the vectors of a vector field not only in terms of vx−
and vy−components but also in polar form: as an angle φ and a magnitude
m:

V =

(
vx
vy

)
=

(
m · cosφ
m · sinφ

)
. (2.25)
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This gives for the partial derivatives:

Vu =

(
vxu

vyu

)
=

(
mu · cosφ−m · φu · sinφ
mu · sinφ+m · φu · cosφ

)
(2.26)

Vv =

(
vxv

vyv

)
=

(
mv · cosφ−m · φv · sinφ
mv · sinφ+m · φv · cosφ

)
. (2.27)

Applying (2.25), (2.26) and (2.27) to (2.12) and (2.18), we obtain:

κ = κ[0] = φu · cosφ+ φv · sinφ (2.28)

κ[
π
2 ] = −φu · sinφ+ φv · cosφ (2.29)

κmax =
√
φu

2 + φv
2. (2.30)

Another possibility of expressing κ is the usage of the normalized vector field
V .

V =

(
vx
vy

)
=




vx√
vx2+vy2

vy√
vx2+vy2


 (2.31)

gives for the partial derivatives:

V u =

(
vxu

vyu

)
=




−vy·(vx·vyu−vy·vxu)

(vx2+vy2)
3
2

vx·(vx·vyu−vy·vxu)

(vx2+vy2)
3
2


 (2.32)

V v =

(
vxv

vyv

)
=




−vy·(vx·vyv−vy·vxv)

(vx2+vy2)
3
2

vx·(vx·vyv−vy·vxv)

(vx2+vy2)
3
2


 . (2.33)

(2.12), (2.18), (2.31), (2.32) and (2.33) yield

κ = κ[0] = −vxv + vyu (2.34)

κ[
π
2 ] = vxu + vyv. (2.35)

(2.5), (2.22), (2.34) and (2.35) give

κmax =
√
vxu

2 + vyu
2 + vxv

2 + vyv
2. (2.36)
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Classical vector analysis provides two fundamental measures of the rate of
the change of a vector field: the divergence and the curl (see [3] or any stan-
dard text book on vector analysis for details). The divergence and the curl
of a vector field consider the magnitude of vectors in the vector field. Never-
theless, using the concepts of normalized and perpendicular vector fields, we
are able to write the vector field curvature in terms of vector field divergence.

Given a vector field V = (vx, vy)T , the divergence of V is defined as (see
[3]):

div(V ) := vxu + vyv (2.37)

and has the following geometrical meaning: considering a small area (volume
for 3D vector fields) element in the flow related to the vector field, the area
(volume) of this element will change during the flow. The divergence is a
measure of how much the area (volume) of such an element changes during
a time dt. A positive divergence means increasing of the area (volume), a
negative divergence means decreasing of the area (volume).

For the perpendicular vector field V [
π
2 ] = (−vy, vx)T we obtain

div(V [
π
2 ]) = −vyu + vxv. (2.38)

Now (2.34), (2.35), (2.37) and (2.38) give

κ = κ[0] = −div(V
[π
2 ]) (2.39)

κ[
π
2 ] = div(V ). (2.40)

2.5 Curvature Behavior Around Critical

Points

In this section we want to discuss a property of the vector field curvature
around critical points. This property –formulated in theorem 1– is one of the
foundations of using the vector field curvature for the visualization of vector
fields (treated in the next chapter).

We consider the normalized vector field V = (vx, vy)T of the vector field
V , given by (2.2). Then we know −1 ≤ vx ≤ 1 , −1 ≤ vy ≤ 1 and
vx2 + vy2 = 1. Furthermore, we know (2.34) and (2.35).
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Figure 2.3: Degenerate critical point

Let (u0, v0) be a critical point of V . We consider a small circle with radius
r > 0 around (u0, v0). For every point of this circle, V defines a direction
(vx, vy)T . We define the extreme values for vx for all points on the circle:

vxmin(r) := min
{
‖vx(u, v)‖ :

√
(u− u0)2 + (v − v0)2 = r

}
(2.41)

vxmax(r) := max
{
‖vx(u, v)‖ :

√
(u− u0)2 + (v − v0)2 = r

}
. (2.42)

Now we define:

Definition 3 The critical point (u0, v0) is degenerate iff

lim
r→0+0

vxmin(r) = lim
r→0+0

vxmax(r) (2.43)

for (u0, v0).

That means that in a very small neighborhood of a degenerate critical point
the directions of the vectors in the vector field do not change. Figure 2.3
gives an illustration of this definition. 1 We want to exclude degenerate
critical points from further treatment.

1From the standpoint of vector field topology (see [5]) we can say: Every critical point
with an index �= 0 in non-degenerate. In fact, for every point with an index �= 0 we obtain:

lim
r→0+0

vxmin(r) = 0

lim
r→0+0

vxmax(r) = 1.
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We consider again a small circle with radius r around the critical point
(u0, v0). Now we define the extreme curvature and the extreme perpendicular
curvature of the vector field for all points on the circle:

κ
[0]
extreme(r) := max

{
‖κ[0](u, v)‖ :

√
(u− u0)2 + (v − v0)2 = r

}
(2.44)

κ
[π
2
]

extreme(r) := max
{
‖κ[π

2
](u, v)‖ :

√
(u− u0)2 + (v − v0)2 = r

}
.(2.45)

Furthermore, we define

κextreme(r) := max
{
κ

[0]
extreme(r), κ

[π
2
]

extreme(r)
}
. (2.46)

Now we can formulate the following

Theorem 1 Let V be a vector field and (u0, v0) be a non-degenerate critical
point of V . Then the following is valid around (u0, v0):

lim
r→0+0

κextreme(r) = ∞. (2.47)

Theorem 1 tells us that in a small neighborhood of a non-degenerate critical
point the vector field curvature tends to infinity – at least for one direction
in either the vector field or the perpendicular vector field.

To prove theorem 1 we have to show that κmax tends to infinity around the
non-degenerate critical point (u0, v0) - at least for one direction. Equation
(2.36) holds that for proving this, it is sufficient to show that at least one of
the values vxu, vxv, vyu, vyv tends to infinity around (u0, v0).

One more time we consider a small circle c around (u0, v0) with radius
r > 0. Furthermore, we consider two points P1 and P2 on c which give the
extreme values of vx for all points of the circle:

vx(P1) = vxmin(r) (2.48)

vx(P2) = vxmax(r). (2.49)

Let d be the distance between P1 and P2. Since P1 and P2 are on c, we know

d ≤ 2 · r. (2.50)

13



(u0,v0)

P1

P2

r

r

d

P

c

Figure 2.4: configuration for proving theorem 1

(If d = 2 · r, i.e. P1 and P2 are diametral on c, we have to move either P1 or
P2 a little bit on c. Doing this we have to make sure that vx(P1) �= vx(P2).)
Figure 2.4 illustrades the configuration for the proof of theorem 1.

We consider the function vx over the line segment P1P2. Let v̇x(P ) be
the directional derivative of vx(P ) in the direction of P1 − P2 for a point P
on the line segment P1P2. Since (2.48), (2.49) and vx is continous over P1P2,
the mean value theorem of differential calculus (see [21]) holds:
There is a point P on the line segment P1P2 with

v̇x(P ) =
vx(P2)− vx(P1)

d
. (2.51)

Furthermore we know that v̇x(P ) can be expressed as a linear combination
of vxu(P ) and vxv(P ):

v̇x(P ) = vxu(P ) · cos δ + vxv(P ) · sin δ (2.52)

for some angle δ.

Now we let the radius r of the circle c converge to 0. Then (2.50) shows
that d converges to 0 as well. This, (2.51), and the fact that the critical
point is non-degenerate yields that v̇x(P ) tends to infinity. This statement
together with (2.52) yields that at least one of the partial derivatives of vx(P )
converges to infinity. Thus, theorem 1 is proven ✷.
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Theorem 1 gives a necessary condition for a non-degenerate critical point
in a vector field. Obviously, this condition is also sufficient: considering equa-
tion (2.12) and keeping in mind that the vector field is piecewise analytic, we
obtain that κ can tend to infinity only if the denominator of (2.12) converges
to 0, i.e. we have a critical point.

2.6 Uniqueness of Curvature Description for

Vector Fields

In this section we want to show that the curvature and the perpendicular
curvature of a vector field describe its normalized vector field uniquely. For
doing this we prove the following

Theorem 2 Given are two vector fields V1 and V2 which have non-constant
direction fields. If κ(V1) = κ(V2) and κ[π

2
](V1) = κ

[π
2
](V2) then the directions

of the vectors of V1 and V2 coincide in every point.

To prove this we describe the vectors of V1 and V2 in polar coordinates, i.e.
in terms of direction angle and magnitude:

V1(u, v) =

(
φ(u, v)
m1(u, v)

)
(2.53)

V2(u, v) =

(
φ(u, v) + α(u, v)

m2(u, v)

)
(2.54)

where φ and φ + α denote the direction angle and m1 and m2 denote the
magnitudes of the vectors. Then we know from (2.28) and (2.29) about the
curvatures of V1 and V2 and their partial derivatives:

κ(V1) = φu · cosφ+ φv · sinφ (2.55)

κu(V1) = φuu · cosφ+ φu · (cosφ)u
+ φuv · sinφ+ φv · (sinφ)u

= φuu · cosφ− φu
2 · sinφ

+ φuv · sinφ+ φu · φv · cosφ (2.56)
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κv(V1) = φuv · cosφ+ φu · (cosφ)v
+ φvv · sinφ+ φv · (sinφ)v

= φuv · cosφ− φu · φv · sinφ
+ φvv · sinφ+ φv

2 · cosφ (2.57)

κ[π
2
](V1) = −φu · sinφ+ φv · cosφ (2.58)

κ[π
2
]
u(V1) = −φuu · sinφ− φu · (sinφ)u

+ φuv · cosφ+ φv · (cosφ)u
= − φuu · sinφ− φu

2 cosφ

+ φuv · cosφ− φu · φv · sinφ (2.59)

κ[π
2
]
v(V1) = −φuv · sinφ− φu · (sinφ)v

+ φvv · cosφ+ φv · (cosφ)v
= − φuv · sinφ− φu · φv · cosφ

+ φvv cosφ− φv
2 · sinφ (2.60)

κ(V2) = (φu + αu) · cos(φ+ α) + (φv + αv) · sin(φ+ α) (2.61)

κu(V2) = (φuu + αuu) · cos(φ+ α) + (φu + αu) · (cos(φ+ α))u
+ (φuv + αuv) · sin(φ+ α) + (φv + αv) · (sin(φ+ α))u

= (φuu + αuu) · cos(φ+ α)− (φu + αu)
2 · sin(φ+ α)

+ (φuv + αuv) · sin(φ+ α)
+ (φu + αu) · (φv + αv) · cos(φ+ α) (2.62)
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κv(V2) = (φuv + αuv) · cos(φ+ α) + (φu + αu) · (cos(φ+ α))v
+ (φvv + αvv) · sin(φ+ α) + (φv + αv) · (sin(φ+ α))v

= (φuv + αuv) · cos(φ+ α)
− (φu + αu) · (φv + αv) · sin(φ+ α)
+ (φvv + αvv) · sin(φ+ α) + (φv + αv)

2 · cos(φ+ α) (2.63)

κ[π
2
](V2) = − (φu + αu) · sin(φ+ α) + (φv + αv) · cos(φ+ α) (2.64)

κ
[π
2
]

u (V2) = − (φuu + αuu) · sin(φ+ α)− (φu + αu) · (sin(φ+ α))u
+ (φuv + αuv) · cos(φ+ α) + (φv + αv) · (cos(φ+ α)u

= − (φuu + αuu) · sin(φ+ α)− (φu + αu)
2 · cos(φ+ α)

+ (φuv + αuv) · cos(φ+ α)
− (φu + αu) · (φv + αv) · sin(φ+ α) (2.65)

κ
[π
2
]

v (V2) = − (φuv + αuv) · sin(φ+ α)− (φu + αu) · (sin(φ+ α))v
+ (φvv + αvv) · cos(φ+ α) + (φv + αv) · (cos(φ+ α))v

= − (φuv + αuv) · sin(φ+ α)
− (φu + αu) · (φv + αv) · cos(φ+ α)
+ (φvv + αvv) · cos(φ+ α)− (φv + αv)

2 · sin(φ+ α). (2.66)
The assumption that the curvatures of V1 and V2 and the perpendicular
curvatures of V1 and V2 coincide gives the system of equations




κ(V1) = κ(V2)
κu(V1) = κu(V2)
κv(V1) = κv(V2)
κ[π

2
](V1) = κ

[π
2
](V2)

κ
[π
2
]

u (V1) = κ
[π
2
]

u (V2)

κ
[π
2
]

v (V1) = κ
[π
2
]

v (V2)




(2.67)

with the 6 unknowns α, αu, αv, αuu, αuv, αvv. Keeping in mind that sin(φ +
α) = sinφ · cosα + cosφ · sinα and cos(φ + α) = cosφ · cosα − sinφ · sinα,
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we can solve this system of equations by substituting all partial derivatives
of α. This gives for αu, αv and α:

αu = −φv · sinα+ φu · cosα− φu (2.68)

αv = φu · sinα+ φv · cosα− φv (2.69)

0 =
sinα · cosφ− cosα · sinφ

cos2 α− cos2 φ

·((cosα− 1) · (φu
2 + φv

2)− sinα · (φuu + φvv)). (2.70)

(2.70) has 3 possible solutions:

α = 0 (2.71)

α = φ (2.72)

α = −2 · arctan φuu + φvv

φu
2 + φv

2 . (2.73)

(2.71) is the trivial solution meaning that V1 = V2. Now we want to show
that (2.72) and (2.73) are in general not solutions of our problem.

Solving the system of equations (2.67) we considered α, αu, αv, αuu, αuv, αvv

as independent variables. Using the dependencies between them we want to
exclude (2.72) and (2.73) as solutions.
a) concerning (2.72), converging α to φ transforms (2.70) to

0 =
(cosα− 1) · (φu

2 + φv
2)− sinα · (φuu + φvv)

cosφ · sinφ . (2.74)

This gives (2.73) as solution for α. Therefore, (2.72) is reduced to (2.73).
b) concerning (2.73), we use the abbrevations

q := φuu + φvv (2.75)

r := φu
2 + φv

2. (2.76)

Applying basic rules of trigonometry and differential calculus, we obtain from
(2.73):

18



sinα = −2 · q · r
q2 + r2

(2.77)

cosα =
q2 − r2
q2 + r2

(2.78)

αu = 2 · q · ru − r · qu
q2 + r2

(2.79)

αv = 2 · q · rv − r · qv
q2 + r2

. (2.80)

Applying this to (2.68) and (2.69), we obtain two conditions for φ:

φu · q · (q2 + r2) = −(q · (q · ru − r · qu) + r · (q · rv − r · qv)) (2.81)

φv · q · (q2 + r2) = r · (q · ru − r · qu)− q · (q · rv − r · qv). (2.82)

This means that (2.73) can be a solution of our problem only if φ (and
therefore the vector field V1) satisfies (2.81) and (2.82). In general, vector
fields do not have this property. (In fact, all vector fields considered in this
paper do not satisfy (2.81) and (2.82).) Thus, for all those vector fields
theorem 2 is proven. ✷

Theorem 2 has an interesting consequence: the curvature and the perpen-
dicular curvature of a vector field V together contain all information about
the directions of the vectors in V . Therefore, curvature and perpendicular
curvature contain all information about the topology of a vector field.

2.7 Linear Vector Fields

Linear vector fields are a special case of the general vector fields considered
in this paper. They are used in many of practical applications: practical
CFD-data usually contains the vector information for sampled points. Be-
tween those points linear (or sometimes bilinear) interpolation of the vector
components is performed. The result is a piecewise linear vector field.

Although linear vector fields can be expressed in a very simple form (so
simple that even a closed formula of the tangent curves exists), they provide
a variety of different topologies. See [10], [11] and [15] for a classification
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of linear vector fields. A general description of vector field topology can be
found in [5].

On the other hand, the number of topologies describable by linear vector
fields is limited in comparison to general vector fields: the piecewise lineariza-
tion of a general vector field might lead to a loss of the original topology.

In this section we want to explore some properties of the curvature of
linear vector fields.

A linear vector field V can be described in the form

V = u · a + v · b (2.83)

where a and b are vector constants. (Usually V also contains a constant
term, but a simple translation transforms V into (2.83)).

Critical points and degeneracies:
V has a critical point in (0, 0). For this critical point we have

Lemma 2 Given is a linear vector field described by (2.83). The critical
point is degenerate (using definition 3) iff the Jacobian j of V satisfies j :=
det[a,b] = 0.

Proof: If j = 0, then vx and vy are linear dependent. That means that
(vx, vy)T has always the same (or the opposite) direction, also around critical
points. Therefore, the critical point is degenerate.
If (0, 0) is degenerate then the directions of the vectors do not change in a
small neighborhood of (0, 0). Since Vu and Vv are constant for linear vector
fields, this means that the directions of the vectors do not change in the
entire vector field. Therefore vx and vy are linearly dependent, which causes
j = 0 ✷.

Linear vector fields described by (2.83) with j �= 0 have one and only one
critical point: the point (0, 0).

Linearity of the radius of curvature along a ray from (0, 0):
Given is a non-degenerate vector field V described by (2.83). We want to
express the domain of V in terms of polar coordinates rc and µ:

u = rc · cosµ (2.84)

v = rc · sinµ. (2.85)
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This gives for V :

V = rc · (cosµ · a + sinµ · b) , Vu = a , Vv = b. (2.86)

Inserting (2.86) into (2.12), we obtain the following

Theorem 3 Given is a linear vector field with a non-degenerate critical
point. We consider an arbitrary ray with its origin in the critical point.
Then one of the following two statements is true:
- the curvature of the vector field is zero for all points on the ray (except for
the critical point itself),
- the radius of curvature of the points on the ray is proportional to their
distance from the critical point (except for the critical point itself). ✷

Figure 3.2 illustrades this theorem.

Duality:
In section 2.6 we have shown that the curvature and the perpendicular cur-
vature of a vector field together contain all information about the directions
of the vectors in the original vector field. For the special case of linear vector
fields we can even make a further statement:

Theorem 4 Let V = (vx, vy)T be a linear vector field with a non-degenerate
critical point, and let κ and κ[π

2
] be the curvature and the perpendicular cur-

vature of V . Furthermore, the vector field V V is defined by V V = (κ, κ[π
2
])T .

κκ and κκ[π
2
] are the curvature and the perpendicular curvature of V V . Then

det

[
vx κκ
vy κκ[π

2
]

]
= 0. (2.87)

The proof of theorem 4 is a simple exercise in algebra: taking (2.83) for V
and computing κ and κ[π

2
] by (2.12) and (2.18) gives V V . Applying (2.12)

and (2.18) again to V V yields κκ and κκ[π
2
]. Then it’s easy to check the

assumption. ✷

Theorem 4 has the following consequence: the two curvatures of a linear
vector field, considered as another vector field, yield a new curvature and
perpendicular curvature field. Those fields together considered as a vector
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field always have the same direction as the original vector field V .

Remark 2: V V produces a critical point only where V has a critical
point. (κκ, κκ[π

2
])T produces a critical point only where V V has a critical

point. Therefore, V and (κκ, κκ[π
2
])T have the same critical points.

Remark 3: For a general vector field V = (vx, vy)T , the necessary and
sufficient condition for the duality property described in theorem 4 is

vy ·
[
(hu, hv) ·Mx ·

(
hu
hv

)]
= vx ·

[
(hu, hv) ·My ·

(
hu
hv

)]

where

hu = det[V, Vu] , hv = det[V, Vv] ,

Mx =

[
vxvv −vxuv

−vxuv vxuu

]
, My =

[
vyvv −vyuv

−vyuv vyuu

]
.

Since the second partial derivatives vanish for linear vector fields they always
satisfy this condition.

2.8 3D Vector Fields

The comprehensive treatment of the curvature of 3D vector fields is not the
subject of this paper. Nevertheless we want to mention some properties
which are simple generalizations of the 2D case.

Let V = (vx(u, v, w), vy(u, v, w), vz(u, v, w))T be a 3D vector field. Fur-
thermore, let L̇(P ), L̈(P ) and L̇̇̇(P ) be the derivative vectors of the tangent
curve through P ∼ (u, v, w). Then we know:

L̇ = V (2.88)

L̈ = vx · Vu + vy · Vv + vz · Vw (2.89)

L̇̇̇ = vx · L̈u + vy · L̈v + vz · L̈w. (2.90)

Using this we can easily compute curvature and torsion of the tangent curves
(see [4]):
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κ =
‖L̇× L̈‖
‖L̇‖3

(2.91)

τ =
det[L̇, L̈, L̇̇̇ ]

‖L̇× L̈‖2
. (2.92)

The concept of perpendicular vector fields can not be generalized in a
simple way: a perpendicular of a 3D vector field is not uniquely defined.

A 2D vector field V defines uniquely a family of curves which are per-
pendicular to the vectors of V in every point. (In fact, these curves are the

tangent curves of V [
π
2 ]). In 3D the analogon of those 2D curves is a family of

surfaces. These surfaces are defined by demanding that their normals have
the same directions as the vectors of the 3D vector field V in every point.
We want to call these surfaces perpendicular surfaces of V .

Perpendicular surfaces of a 3D vector field V do not intersect each other
(except for critical points, i.e. points with ‖V ‖ = 0). For every point P ∈ IE3

there is one and only one perpendicular surface through it (except for critical
points). So we can define the Gaussian curvature K and the mean curvature
H of the perpendicular surface for every point in the 3D space. Applying the
results for the curvature of 3D tangent curves and the classical definitions of
Gaussian and mean curvature, we obtain for K and H:

H =
h

2 · ‖V ‖3
(2.93)

K =
k

4 · ‖V ‖4
(2.94)

where

h = vx · (V · Vu) + vy · (V · Vv) + vz · (V · Vw)

− ‖V ‖2 · (vxu + vyv + vzw)
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and

k =
(
vx · (vyw + vzv) + vy · (vxw + vzu) + vz · (vxv + vyu)

)2

− 2 ·
(
vx2 · (vyw + vzv)

2 + vy2 · (vxw + vzu)
2 + vz2 · (vxv + vyu)

2)

+ 4 · (vx2 · vyv · vzw + vy2 · vxu · vzw + vz2 · vxu · vyv)
− 4 · vx · vy · vzw · (vxv + vyu)

− 4 · vx · vz · vyv · (vxw + vzu)

− 4 · vy · vz · vxu · (vyw + vzv).

Remark 4: The mean curvature H can also be written in terms of vector
field divergence:

H = −div(V )

2
(2.95)

where

V =
V

‖V ‖ .

A linear 3D vector field is defined by

V (u, v, w) = u · a + v · b + w · c + d (2.96)

where a, b, c and d are 3D vector constants.

For 3D linear vector fields theorem 3 is valid. Also for the torsion we ob-
tain a theorem similar to 3: we only have to replace ”curvature” by ”torsion”
and ”radius of curvature” by ”1 / torsion”.
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Chapter 3

Curvature and Vector Field
Visualization

In this chapter we want to apply the results of chapter 2 for developing
a visualization technique for vector fields. Examples of this technique are
shown.

3.1 Previous Work and Classification

The visualization of vector fields has become one of the main topics in scien-
tific visualization: CFD-data is usually given as vector fields, their visualiza-
tion may provide new information about many processes in nature, science
and technology.

Several techniques for visualizing a vector field have been developed. A
survey of visualization techniques for vector fields can be found in [24]. In
order to visualize vector fields, one has to solve one general problem: usually
a vector field (2D and 3D) contains more information than is visualizable on
a screen. So we have to pick out the parts of information which are most
important for our application. Then we have to choose (or create) a suitable
visualization technique which emphasizes the selected kind of information.

Since every technique for visualizing a vector field can only handle a part
of the information in the vector field, we can make the following statement:
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There is no general visualization technique for vector fields which is suit-
able for all applications. Every technique is appropriate only for a particular
class of applications.

We want to consider only static visualizations of a steady flow, i.e. we
have one fixed picture for the time independent vector field. Based on the
question of how the information of the vector field is reduced we can clas-
sify the vector field visualization techniques in the following classes (where
combinations of different classes are possible):

1) Pick out single points of the vector field and visualize local properties in
these points as icons. These icons are usually arrow-like objects and contain
direction and magnitude of the vectors in the particular points. In [18] a more
complex icon for visualizing more local properties (divergence and shear of
the vector field, curvature and torsion of the tangent curves) is used. [18]
seems to be the first paper to use the curvature of tangent curves for vector
field visualization. The first order approximation of a 3D vector field is
taken to compute curvature and torsion. The obtained curvature coincides
with the curvature of the actual (unapproximated) vector field. The torsion
differs because the first order approximation of a vector field considers only
its first order partial derivatives.

2) Pick out a single property of the vector field and visualize it over the
entire domain of the vector field. These single properties can be scalars like
magnitude or direction angle of the vector field. The visualization can be
done by color coding or contouring (see [9]).

3) Visualize the tangent curves of the vector field. Tangent curves are a
powerful tool for visualizing vector fields. The knowledge of tangent curves
implies the knowledge of the directions of the vectors in the vector field. The
visualization of tangent curves creates two major problems:
-a) It must be decided how many tangent curves are visualized. Too many
curves lead to a confusing display. On the other hand, there must be as
many visualized tangent curves as the user needs to infer the behavior of the
remaining curves.
-b) As mentioned in chapter 2, tangent curves can in general not be described
as parametric curves but only as the solution of a system of differential equa-
tions. Their visualization requires a numerical solution of those equations.
Several approaches for a numerical integration of tangent curves are presented

26



in [2], [6], [7], [10], [11], [15], [24] and [26].

The use of topological concepts is an approach for solving problem a). In
[10], [11] and [15] the critical points of the vector field are detected and clas-
sified. These points are connected by particular tangent curves, called sep-
aration curves. Unfortunately, the classification of the critical points works
only for the first order approximation of vector fields. If the first order ap-
proximation changes the topology the method might give us a wrong image
of the vector field.

Another approach for solving problem a) can be found in [26]. Here, a line
integral convolution technique is used for visualizing the vector field. Since
this technique is also based on the numerical integration of tangent curves,
the risk of destroying the topology of the vector field remains.

3.2 The Technique and Examples

The visualization technique for vector fields presented in this section is a
combination of the classes 2) and 3) from section 3.1. We want to use the
power of tangent curves but avoid the problems a) and b) of class 3). We
achieve this by visualizing not the tangent curves directly but one of their
most characteristic properties: their curvature. The curvature of the tangent
curves reflects important properties of the curves, and therefore yields infor-
mation about the behavior of the entire vector field. Generally, turbulences
in the flow of fluids and gases lead to extremely high and frequently changing
curvatures of the tangent curves.

Using the results from chapter 2, we can compute the curvature and the
perpendicular curvature of a vector field and visualize these two scalar fields
by color coding. The color coding map is shown in figure 3.1.

The curvature κ (which can lie anywhere between −∞ and ∞) is ”nor-
malized” to κnorm in the interval 〈−1, 1〉 using the equation

κnorm = sgn(κ) · (1− e−‖κ‖·con).

The same is done for κ[π
2
]. The positive value con can be considered as the

contrast of the visualization. Decreasing con leads to a darker picture but
emphasizes the critical points. con should be chosen interactively.
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We consider some examples.

Figure 3.2 shows the visualization of a linear vector field. The critical
point is a saddle point for both the vector field and the perpendicular vector
field. The upper left picture shows the direction of the vectors for some
sampled points. The upper right picture is the curvature plot. The lower
two pictures show the same for the perpendicular vector field. The critical
point of the vector field can be detected as a highlight in the curvature plots.
As shown in theorem 3, the curvature is inversely proportional to the distance
to the critical point along a ray from the critical point.

Figure 3.3 shows the visualization of the vector field

V (u, v) =

(
3 · u · v2 − u
3 · v · u2 − v

)

in the range (u = 〈−1.5, 1.5〉, v = 〈−1.5, 1.5〉). Again, the upper left picture
shows the directions of the vectors for some sampled points, and the upper
right picture is the curvature plot of the vector field. The lower two pictures
show the same for the perpendicular vector field. This vector field has 5
critical points (0, 0), (−

√
3

3
,−

√
3

3
), (−

√
3

3
,
√

3
3
), (

√
3

3
,−

√
3

3
), (

√
3

3
,
√

3
3
). They can

be easily detected as highlights in the curvature plots. The critical point
(0, 0) is an example of a non-degenerate critical point which does not produce
a highlight in the curvature plot. But then – as shown in theorem 1 – it must
produce a highlight in the perpendicular curvature plot.

Figure 3.4 shows the vector field

vx = − 0.232875 · u2 + 0.037546 · u · v + 0.037546 · v2

+ 0.051511 · u − 0.302699 · v − 0.103209

vy = − 1.029676 · u2 − 0.213010 · u · v + 0.246278 · v2

+ 0.687847 · u − 0.144779 · v + 0.143656

in the range (u = 〈−1.5, 1.5〉, v = 〈−1.5, 1.5〉). This vector field was taken
from [15]. The critical points are well detectable in the curvature plots.

Figure 3.5 shows the vector field

V (u, v) =




(
sgn(u) · (−2 · v2 + u2)

sgn(v) · (−v2)

)
if ‖v‖ < ‖u‖(

sgn(u) · (−u2)
sgn(v) · (−2 · u2 + v2)

)
otherwise
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in the range (u = 〈−1.5, 1.5〉, v = 〈−1.5, 1.5〉). This vector field has a higher
order critical point in (0, 0) - a saddle point with 4 pairs of tangent curves
through it. It should therefore be clear that applying visualization methods
based on first order approximation of the vector field would not lead to
satisfactory results for this example.

The vector field visualized in figure 3.6 is obtained by bilinear interpo-
lation of the vectors on a regular 4×4 grid. We obtain gaps in the curvature
plots between the grid cells. (In this figure the arrow plots also consider the
magnitudes of the vectors in the vector field.) In general, piecewise (bi-)linear
interpolation produces tangent curves which are not curvature continuous at
the borders of the grid cells.

Figure 3.7 shows the flow of water in the bay area of the Baltic Sea near
Greifswald, Germany (Greifswalder Bodden). This data is taken from [27].
The bay coveres an area of 23 × 26km. The maximal depth of the water is
12m. The flow in this shallow water can be considered as a steady 2D flow.
The vectors of the sample points on a regular 115 × 103 grid are obtained
by a numerical simulation. Between the grid points a bilinear interpolation
is applied.

The curvature visualization of this vector field shows many critical points,
i.e. turbulences in the flow. There is no risk of missing certain critical points.
The border lines of the grid cells appear as discontinuities in the curvature
visualization.

3.3 Assessment of the Technique

The vector field visualization technique for 2D vector fields introduced in
section 3.2 has the following properties:

– The visualization is ”exact”, we don’t have to apply any numerical
solution method.

– non-degenerate critical points can always be recognized as highlights - at
least in the κ- or the κ[π

2
]- visualization (as shown in theorem 1). Conversely,

highlights in the visualization always indicate critical points in the vector
field.
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– From the κ- and the κ[π
2
]- visualization we can uniquely infer the nor-

malized original vector field (as shown in theorem 2). Therefore, the κ- and
the κ[π

2
]- visualizations contain all information about the topology of the orig-

inal vector field. Since we don’t have to first order approximate the vector
field, there is no risk of destroying its topology.

– We obtain a non-confusing visualization without overloading and am-
biguities.

There are disadvantages of the technique as well:

– The curvature plot does not directly provide any information about
the direction of the vector in a point – which might be useful for some ap-
plications. But if we look for areas of turbulences in CFD data sets, this
disadvantage should not play an important role.

– The user is not accustomed to dealing with curvature information of
tangent curves, even if this provides a great deal of information about the
behavior of the vector field.

In principle, the visualization technique can also be used for 3D vector
fields. To visualize the curvature of a 3D vector field we have to use methods
of volume visualization.
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Figure 3.1: Color coding the curvature of vector fields
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Figure 3.2: Linear vector field with saddle point
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Figure 3.3: Vector field with 5 critical points
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Figure 3.4: Vector field with 4 critical points
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Figure 3.5: Vector field with a higher order critical point
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Figure 3.6: Piecewise bilinear vector field
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Figure 3.7: Flow in a bay area of the Baltic Sea
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Chapter 4

Tangent Curves on Surfaces

The 2D tangent curves considered till now were located in a plane, i.e., on
a special surface. In the next two chapters we want to consider tangent
curves on general parametrized surfaces and we want to explore some of
their properties.

4.1 Definitions, Notations, Abbrevations

Tangent curves on surfaces can be defined in two ways.

Definition 4 Given is a surface x(u, v) =


 x(u, v)
y(u, v)
z(u, v)


 and a map

W : IE2 → IR3. W relates any point of the domain to a vector in 3D. Together
with x, W can be considered as relating any point x(u, v) on the surface to
a 3D-vector W (u, v). W is called vector field over the surface x.
A tangent curve defined by W is a curve on the surface where the tangent
vector and the projection of W (u, v) into the tangent plane of x(u, v) have
the same direction for any point of the curve.

See figure 4.1 for an illustration of this definition.
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x(u1,v1)

W(u1,v1)

x(u2,v2)

W(u2,v2)

Figure 4.1: A vector field W over a surface x. Shown are x, W and the
projection of W in the tangent plane of x for two points (u1, v1) and (u2, v2).

Definition 5 Given is a surface x and a 2D vector field V in the domain.
V produces a family of tangent curves in the domain. The maps of these
domain curves onto the surface x are called tangent curves on the surface x.

Figure 4.2 illustrates this definition. The correlations between the definitions
4 and 5 are discussed in the next section.

We want to use the following notations and abbrevations:

ẋ(u, v) and ẍ(u, v) denote the first and second derivative vector of the
tangent curve on x through x(u, v) in the point x(u, v). (Since we deal with
corresponding vector fields W and V in the following, we don’t distinguish
in the notation of ẋ and ẍ whether they are obtained from W or V . )

n = n(u, v) = xu×xv

‖xu×xv‖ is the normalized normal vector of the surface

x(u, v).

The normal line of x(u, v) is defined by x(u, v) + λ · n(u, v), (λ ∈ IR).

Furthermore, we use the classical abbrevations

E = xu · xu (4.1)

F = xu · xv (4.2)

G = xv · xv (4.3)
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u

v

V(u,v)

x

Figure 4.2: A vector field V in the domain and the mapping of it’s tangent
curves onto the surface x.

L = n · xuu (4.4)

M = n · xuv (4.5)

N = n · xvv (4.6)

and their partial derivatives

Eu = 2 · xu · xuu (4.7)

Ev = 2 · xu · xuv (4.8)

Fu = xu · xuv + xuu · xv (4.9)

Fv = xu · xvv + xuv · xv (4.10)

Gu = 2 · xuv · xv (4.11)

Gv = 2 · xv · xvv (4.12)

Lu = nu · xuu + n · xuuu (4.13)

Lv = nv · xuu + n · xuuv (4.14)

Mu = nu · xuv + n · xuuv (4.15)

Mv = nv · xuv + n · xuvv (4.16)

Nu = nu · xvv + n · xuvv (4.17)

Nv = nv · xvv + n · xvvv. (4.18)
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4.2 Corresponding Vector Fields on Surfaces

Definition 6 Given is a surface x, a 2D vector field V in the domain of x
and a 3D vector field W over x. W and V are called corresponding referring
to the surface x, if the two families of tangent curves obtained from W (using
definition 4) and V (using definition 5) are identical.

Definition 6 gives reason to solve the following two problems:
1) Given is a surface x and a domain vector field V . We look for a corre-
sponding vector field W over x as well as for ẋ and ẍ.
2) Given is a surface x and a vector field W over x. We look for a corre-
sponding domain vector field V , for ẋ and ẍ.

We start with problem 1).
Given a curve [u = u(t), v = v(t)] in the domain, we can easily compute the
map of this curve on the surface and its first and second derivative vector
(see [4]):

x(t) = x(u(t), v(t))

ẋ(t) = (u̇ · xu + v̇ · xv)(t) (4.19)

ẍ(t) = (ü · xu + v̈ · xv + u̇
2 · xuu + 2 · u̇ · v̇ · xuv + v̇

2 · xvv)(t).

Considering the domain curve as a tangent curve in the domain defined by
V , we know the first and the second derivative vector in any point of the
domain from section 2.2:(

u̇
v̇

)
= V

(
ü
v̈

)
= vx · Vu + vy · Vv. (4.20)

(4.19) and (4.20) yield for the tangent curves on the surface x:

ẋ = vx · xu + vy · xv (4.21)

ẍ = vx · ẋu + vy · ẋv (4.22)

= (vx · vxu + vy · vxv) · xu

+ (vx · vyu + vy · vyv) · xv

+ vx2 · xuu + 2 · vx · vy · xuv + vy
2 · xvv. (4.23)
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Furthermore, a corresponding vector field to V is

W = ẋ. (4.24)

To problem 2):
Given the vector field W over x, the first derivative vector of the tangent
curve is the projection of W onto the tangent plane for every point of the
surface:

ẋ = W − (W · n) · n. (4.25)

To obtain a corresponding vector field V , we have to solve the linear system
of equations denoted by (4.21). This system consists of 3 equations and the
two unknowns vx and vy. Since ẋ, xu and xv are all in one plane (namely in
the tangent plane of x), we can find a solution for any regularly parametrized
surface. This solution is:

V =

(
vx
vy

)
=

1

‖xu × xv‖ ·
(

det[n,W,xv]
− det[n,W,xu]

)
. (4.26)

(4.26) has reduced problem 2) to problem 1). Now we can compute ẍ in a
similar way as in problem 1). We obtain (4.22) where we know from (4.25)
that

ẋu = Wu − (Wu · n) · n − (W · nu) · n − (W · n) · nu

ẋv = Wv − (Wv · n) · n − (W · nv) · n − (W · n) · nv.

Remark 1: The solutions of the problems 1) and 2) described above
are dual in the following sense: The corresponding vector field of the corre-
sponding vector field of V is V as well. The corresponding vector field of
the corresponding vector field of W is the projection of W onto the tangent
planes of x.

Remark 2: Another (and sometimes easier) solution for problem 2) is

V =

(
det[n,W,xv]
− det[n,W,xu]

)
. (4.27)

This choice of V leads to

ẋ = det[n,W,xv] · xu − det[n,W,xu] · xv (4.28)
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which is parallel to the ẋ from (4.25). Furthermore, we have

Vu =

(
det[nu,W,xv] + det[n,Wu,xv] + det[n,W,xuv]

− det[nu,W,xu]− det[n,Wu,xu]− det[n,W,xuu]

)

Vv =

(
det[nv,W,xv] + det[n,Wv,xv] + det[n,W,xvv]

− det[nv,W,xu]− det[n,Wv,xu]− det[n,W,xuv]

)

Using (4.23) we can compute ẍ.
Unfortunately, this choice of V destroys the duality described in remark 1.

4.3 Curvature and Geodesic Curvature

Given ẋ(u, v) and ẍ(u, v), we can easily compute the curvature κ(u, v) of the
tangent curve through x(u, v) in the surface point x(u, v):

κ =
‖ẋ × ẍ‖
‖ẋ‖3 . (4.29)

(4.29) denotes the curvature of a 3D space curve, therefore κ is always non-
negative. In order to get a signed curvature, we want to compute the geodesic
curvature of the tangent curves.

The geodesic curvature κg of a curve in the point x(u, v) can be considered
as the curvature of the projection of the curve into the tangent plane of
x(u, v), (see figure 4.3).

Since κg is the curvature of a 2D curve we can equip it with a sign. We
can compute κg by projecting ẋ and ẍ into the tangent plane and taking a
sign into consideration:

ẋg = ẋ

ẍg = ẍ − (ẍ · n) · n (4.30)

κg = sgn(det[ẋ, ẍ,n]) · ‖ẋg × ẍg‖
‖ẋg‖3 (4.31)

Between the curvature κ and the geodesic curvature κg there is the following
correlation (see [20]):

κ =
√
κn

2 + κg
2 (4.32)
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x

n

c

cp

Figure 4.3: Curvature and geodesic curvature. cp is the projection of the
surface curve c into the tangent plane of x = x(u, v). The geodesic curvature
of c in x(u, v) is the curvature of cp in x(u, v)

where κn denotes the normal curvature of the surface in the direction ẋ.

Altogether, we can make the following statement: In order to compute the
curvature (the geodesic curvature respectively) of tangent curves on surfaces,
we only need to know the surface, the domain vector field V and its partial
derivatives Vu and Vv.

Remark 3: The values obtained for κ do not depend on the magnitudes
of the vectors in W or V .

Remark 4: The domain vector field V has a critical point in (u, v) iff
the magnitude of V (u, v) vanishes. The vector field W over x has a critical
point in (u, v) iff n(u, v)×W (u, v) = 0.

4.4 Rotated Vector Fields over Surfaces

In section 2.3 we have investigated rotated vector fields in the plane and
their curvatures. In this section we want to expand these conceps to rotated
vector fields over surfaces.
Let W and Y be two vector fields over a surface x. W produces a family of
tangent curves, Y produces another family of tangent curves on x. W and Y
are called perpendicular relative to the surface x if the tangent curves of W
and Y on x are perpendicular to each other in every point of x. Therefore,W
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and Y are perpendicular relative to x if their projections Wp and Yp into the
tangent plane are perpendicular to each other for every point on the surface.
So we have the following condition for perpendicularity of W and Y relative
to x:

Wp · Yp = 0

⇐⇒ (W − (W · n) · n) · (Y − (Y · n) · n) = 0 (4.33)

⇐⇒ (W · n) · (Y · n) = W · Y. (4.34)

Now we want to introduce the concept of rotated vector fields over surfaces.

Given a vector field W over x, a vector field W [γ] is called rotated by the
angle γ if the angle between the projections of W [γ] and W into the tangent
plane is γ for every point of the surface. Figure 4.4 illustrates the concepts
of rotated and perpendicular vector fields.

Now we want to discuss how the curvature of a rotated vector field W [γ]

depends on γ.

Let W [γ] be a rotated vector field of the vector field W =W [0]. Then we
obtain for its geodesic curvature κg

[γ]:

κg
[γ] = κg

[0] · cos γ + κg
[π
2
] · sin γ. (4.35)

For the curvature κ[γ] we know from (4.32) :

κ[γ] =
√
(κn

[γ])2 + (κg
[γ])2 (4.36)

where κn
[γ] denotes the normal curvature of the surface in the directionWp

[γ].
Equation (4.35) informs us about the behavior of κg

[γ] while changing γ. The
behavior of κn

[γ] is determined by Euler’s theorem:
Let Wp

[γ0] be one direction of extreme normal curvature of x, i.e., one of the
principal directions. Then we obtain:

κn
[γ] = κn

[γ0] · cos2(γ − γ0) + κn
[γ0+

π
2
] · sin2(γ − γ0). (4.37)

4.5 ”Thickness” of Tangent Curves

We consider the special case that a scalar field s(u, v) over x is given and
the desired tangent curves are the equipotential lines of s on the surface. For
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Hp

H

F

Fp

G

Gp

Figure 4.4: Rotated vector fields over a surface. Shown are the represen-
tatives of the vector fields W , Y and Z for one point x(u, v), the tangent
plane in x(u, v) and the projections Wp, Yp and Zp of W , Y and Z into the
tangent plane. Let us assume that the angle between Wp and Zp is π

6
and

the angle between Wp and Yp is π
2
. Then we obtain W = W [0], Y = W [π

2
]

and Z = W [π
6
].

this special case there is an easy way of drawing a ”representative” of these
curves: mark all those points on the surface which have a value of s in a fixed
(small) intervall. (The upper left pictures of the figures 6.2, 6.5, 6.6, 6.7, 6.8
and the lower left pictures of the figures 6.6 and 6.8 are generated this way).

The resulting ”lines” on the surface are actually point sets with a changing
”thickness”. This ”thickness” may provide information about the behavior
of the surface and the tangent curves.

The ”thickness” of a tangent curve on a surface x(u, v) denotes how
”strongly” the values of the scalar field change around x(u, v). A thin tangent
curve indicates a strong change of the values of s around x(u, v).

We consider the scalar field s in the domain of the surface. A measure of
how much s changes around a point (u, v) is the magnitude of the gradient
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(su, sv)
T . We only have to map this gradient vector onto the surface in an

appropriate form. The magnitude of the resulting vector on the surface tells
us how much s changes on the surface around the point x(u, v).

The projection xgr of the gradient vector (or to be exactly: a vector
perpendicular to the gradient vector but with the same magnitude) has the
following equation:

xgr =
−sv · xu + su · xv

‖xu × xv‖ . (4.38)

Then the ”thickness” th(u, v) of the tangent curve through x(u, v) can be
expressed in the form:

th =
1

‖xgr‖ (4.39)

(4.38) and (4.39) show that th around a critical point tends to infinity.

4.6 Geometric Continuity of Tangent Curves

on Surfaces

Since we are able to compute the curvature of tangent curves it makes
sence to ask for conditions for the surface to achieve a G2 continuity of the
tangent curves.

We want to use the following definition for geometric continuity (see [4],
[25]):
Two curves are Gr at a common point x iff there exists a regular parametriza-
tion with respect to which they are Cr at x. Two surfaces are Gr along a
common line l iff there exists a regular parametrization with respect to which
they are Cr along l.

It has been recognized that there are equivalent definitions for r = 1, 2
which use geometric properties of the curve/surface:
Two curves through the point x0 are G2 in this point iff
– the normalized tangent vectors coincide in x0 and
– the osculating planes coincide in x0 and
– the signed curvatures coincide in x0.
Two surfaces sharing a common line l are G1 along l iff their normalized
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normal vectors coincide along l.
Two surfaces are G2 along l iff
– the normalized normal vectors coincide along l and
– the Dupin’s indicatrices coincide along l.

In [22] there are some more geometric conditions for G2 surfaces.

In the next chapter we want to develop surface conditions for G2 con-
tinuity of particular tangent curves. Doing this we obtain some geometric
conditions (necessary and sufficient) for G3 continuity of surfaces. Those
conditions are formulated in the theorems 5 and 6.
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Chapter 5

Particular Tangent Curves on
Surfaces

In this chapter we want to apply the theoretical results from the previous
chapter to concrete families of curves on surfaces. These curves are: contour
lines, lines of curvature, asymptotic lines, isophotes and reflection lines.
All these curves have something in common:
– They reflect geometric properties of the surface, i.e. they do not depend
on the parametrization of the surface.
– For sufficiently complicated surfaces (for instance bicubic polynomial sur-
faces), these lines can be described only as the solution of differential equa-
tions. The treatment of the curves themselves requires the numerical solution
of those equations.

For all these curves, we want to compute their curvature and (if possible)
their ”thickness”. Furthermore, we develop conditions for critical points and
we look for conditions of G2-continuity of these curves.

For computing the curvature of these curves we only have to show how
the domain vector field V and its partial derivatives are computed. Then
we can apply the results from section 4.2 to compute curvature and geodesic
curvature.
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5.1 Contour Lines

A family of contour lines is defined by a normalized direction vector r in
the 3D space. We consider all planes perpendicular to r. The intersections
of these planes with the surface yield a family of curves on the surface -
the contour lines. Therefore, points on the surface are located on the same
contour line referring to r if the scalar field

s(u, v) = r · (x − (0, 0, 0)T ) (5.1)

gives the same values for those points. Thus, contour lines are the equipoten-
tial lines of the scalar field s. The direction of these lines in the domain can
be computed as the perpendiculars to the gradients of s. Since the gradient
of s is given by (su, sv)

T , we obtain for the directions of the contour lines in
the domain:

V =

( −sv
su

)
=

( −r · xv

r · xu

)
. (5.2)

From (5.2) we obtain

Vu =

( −suv

suu

)
=

( −r · xuv

r · xuu

)
(5.3)

Vv =

( −svv

suv

)
=

( −r · xvv

r · xuv

)
. (5.4)

Remark 1: If we take

V =
1

‖xu × xv‖ ·
( −r · xv

r · xu

)
(5.5)

we obtain the following formulas for the first and second derivative vectors
of the surface curve:

ẋ = n × r (5.6)

ẍ =
(r · xu) · (nv × r)− (r · xv) · (nu × r)

‖xu × xv‖ . (5.7)

Critical points:
To obtain a critical point we have to have V = (0, 0)T . Since we assume a
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regularly parametrized surface, this occurs iff n and r have the same direction.

Continuity:
All contour lines through a point x0 on x are G2 iff x is G2 in a neighborhood
of x0 (see [1]).

”Thickness”:
Since we know the scalar field s, we can use (4.38) and (4.39) to compute the
”thickness” of the contour lines. For contour lines, (4.39) can also be written
in the form

th =
1

‖n × r‖ . (5.8)

5.2 Lines of Curvature

Lines of curvature are the tangent curves of the principal directions – consid-
ered as a vector field on the surface. Since there are two principal direction
vector fields (whose vectors are perpendicular to each other) we have two
families of lines of curvature.
The principal directions are the solutions (vx, vy)T of the quadratic equation
(see [4]):

det


 vy

2 −vx · vy vx2

E F G
L M N


 = 0. (5.9)

(5.9) yields two solution classes of (vx, vy)T (where a solution class contains
only vectors of the same direction). We use the abbrevattions ha, hb and hc
which are defined as: 

 ha
hb
hc


 =


 E
F
G


 ×


 L
M
N


 . (5.10)

This gives for the partial derivatives:

51




 hau

hbu
hcu


 =


 Eu

Fu

Gu


 ×


 L
M
N


 +


 E
F
G


 ×


 Lu

Mu

Nu


 (5.11)


 hav

hbv
hcv


 =


 Ev

Fv

Gv


 ×


 L
M
N


 +


 E
F
G


 ×


 Lv

Mv

Nv


 . (5.12)

Furthermore, we use the abbrevations

hd = hb2 − 4 · ha · hc (5.13)

hdu = 2 · hb · hbu − 4 · hau · hc− 4 · ha · hcu (5.14)

hdv = 2 · hb · hbv − 4 · hav · hc− 4 · ha · hcv, (5.15)

Then we can write two representatives of the solution classes of (5.9) – one
for each class – in the form:

V1 =

(
vx1

vy1

)
=

( −2 · ha+ hb−√
hd

2 · hc− hb−√
hd

)
(5.16)

V2 =

(
vx2

vy2

)
=

( −2 · ha+ hb+√
hd

2 · hc− hb+√
hd

)
. (5.17)

This yields for the partial derivatives:

V1u =

( −2 · hau + hbu − hdu

2·√hd

2 · hcu − hbu − hdu

2·√hd

)
(5.18)

V1v =

( −2 · hav + hbv − hdv

2·√hd

2 · hcv − hbv − hdv

2·√hd

)
(5.19)

V2u =

( −2 · hau + hbu + hdu

2·√hd

2 · hcu − hbu + hdu

2·√hd

)
(5.20)

V2v =

( −2 · hav + hbv +
hdv

2·√hd

2 · hcv − hbv + hdv

2·√hd

)
. (5.21)
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Critical points:
occur iff V1 = (0, 0)T and V2 = (0, 0)T . Since

(vx1 = 0) ∧ (vx2 = 0) ⇐⇒ (hd = 0) ∧ (2 · ha = hb)
(vy1 = 0) ∧ (vy2 = 0) ⇐⇒ (hd = 0) ∧ (2 · hc = hb),

this is only possible for 2 · ha = hb = 2 · hc. This and (5.10) give 0 =
(ha, 2 · ha, ha)T · (E,F,G)T . Since x is regularly parametrized, this is only
possible for ha = 0 = hb = hc, i.e. we have an umbilical point. Therefore,
lines of curvature produce critical points in (and only in) umbilical points on
the surface.

Continuity:
The correlation between the geometric continuities of the lines of curvature
and the surface is given by

Theorem 5 Given are two surfaces x and x̃ which join along a common
line l. Furthermore, every point on l is non-umbilical in x and x̃, and in no
point of l the lines of curvature of x and x̃ are tangent to l. Then x and x̃
are G3 along l iff their lines of curvature are G2 across l.

Proof:
” ⇒ ”: If x and x̃ are G3 along l they can be reparametrized in a way that
they coincide in all partial derivatives of order ≤ 3. Since the curvature
formula of the lines of curvature contains only those derivatives (see above),
the lines of curvature are G2.
” ⇐ ”: We assume that the junction line l is (0, v), 0 ≤ v ≤ 1. This can be
done by a linear reparametrization of x and x̃ without loss of generality.

The G2 condition of the lines of curvature contains coincidence in surface
normal, principal directions and principal curvatures, therefore G2 of the
surfaces along l. Thus, we can assume that x and x̃ are parametrized in a
way that

x(0, v) = x̃(0, v) ; xu(0, v) = x̃u(0, v)

xv(0, v) = x̃v(0, v) ; xuu(0, v) = x̃uu(0, v)

xuv(0, v) = x̃uv(0, v) ; xvv(0, v) = x̃vv(0, v). (5.22)
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From (5.22) we obtain

xuuv(0, v) = x̃uuv(0, v)

xuvv(0, v) = x̃uvv(0, v)

xvvv(0, v) = x̃vvv(0, v). (5.23)

Let ẋ1 and ẋ2 be the tangent vectors of the lines of curvature on x. Further-
more, let ˙̃x1 and ˙̃x2 be the tangent vectors of the lines of curvature on x̃.
Then (4.21), (5.16), (5.17) and (5.22) give

ẋ1(0, v) = (vx1 · xu + vy1 · xv)(0, v) = ˙̃x1(0, v) (5.24)

ẋ2(0, v) = (vx2 · xu + vy2 · xv)(0, v) = ˙̃x2(0, v) (5.25)

where vx1, vy1, vx2, vy2 are given by (5.16) and (5.17).

Let ẍ1 and ẍ2 be the second derivative vectors of the lines of curvature of
x, and let ¨̃x1 and ¨̃x2 be the second derivative vectors of the lines of curvature
of x̃. Then (4.23), (5.16) – (5.21) and (5.22) give

¨̃x1(0, v)− ẍ1(0, v) = vx1 · (n · (x̃uuu − xuuu)) · (a1 · xu + b1 · xv) (5.26)
¨̃x2(0, v)− ẍ2(0, v) = vx2 · (n · (x̃uuu − xuuu)) · (a2 · xu + b2 · xv) (5.27)

where

a1 =
2 · ha · F + hb ·G√

hd
−G (5.28)

b1 =
2 · ha · F + hb ·G√

hd
+ 2 · F +G (5.29)

a2 =
2 · ha · F + hb ·G√

hd
+G (5.30)

b2 =
2 · ha · F + hb ·G√

hd
− 2 · F −G. (5.31)

(The assumption that no umbilical point is on the junction line l ensures
that hd > 0 along l.)

Now the G2 condition of the lines of curvature across l can be formulated
in the following way:

(¨̃x1(0, v)− ẍ1(0, v)) parallel to ẋ1(0, v) (5.32)

(¨̃x2(0, v)− ẍ2(0, v)) parallel to ẋ2(0, v). (5.33)
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Using (5.24), (5.25), (5.26), (5.27) and the fact that xu and xv are linearly
independent, we can write (5.32) and (5.33) in the form

vx1 · (n · (x̃uuu − xuuu)) · det1 = 0 (5.34)

vx2 · (n · (x̃uuu − xuuu)) · det2 = 0 (5.35)

where

det1 = det

[
vx1 a1

vy1 b1

]
(5.36)

det2 = det

[
vx2 a2

vy2 b2

]
. (5.37)

(5.24), (5.25) and the assumption that the lines of curvature are not parallel
to l give

vx1 · vx2 �= 0. (5.38)

From (5.28) - (5.31), (5.36) and (5.37) we obtain

det1 · det2 =
vx1

2 · vx2
2 · (F 2 − E ·G)
hd

. (5.39)

This, (5.38) and the assumption that x and x̃ are regularly parametrized
yield

det1 · det2 �= 0. (5.40)

From (5.34), (5.35), (5.38) and (5.40) we obtain

(n · (x̃uuu − xuuu))(0, v) = 0. (5.41)

Because of (5.41), there exist two scalar functions r1(v) and r2(v) so that

x̃uuu(0, v) = xuuu(0, v) + r1(v) · xu(0, v) + r2(v) · xv(0, v). (5.42)

Now we look for a reparametrization x̂ of x which is C3 to x̃ along l. We
define

x̂(u, v) := x(û(u, v), v̂(u, v)) (5.43)

where

û(u, v) = u+
1

6
· u3 · r1(v) (5.44)

v̂(u, v) = v +
1

6
· u3 · r2(v). (5.45)
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Considering (5.44) and (5.45) to the junction line l (i.e., setting u = 0), we
obtain:

û(0, v) = 0 ; ûu(0, v) = 1 ; ûuu(0, v) = 0 ; ûuuu(0, v) = r1(v) (5.46)

v̂(0, v) = v ; v̂u(0, v) = 0 ; v̂uu(0, v) = 0 ; v̂uuu(0, v) = r2(v). (5.47)

Applying the chain rule to (5.43), we obtain for the u-partials of x̂:

x̂u = ûu · xu + v̂u · xv (5.48)

x̂uu = û2
u · xuu + 2 · ûu · v̂u · xuv + v̂

2
u · xvv

+ûuu · xu + v̂uu · xv (5.49)

x̂uuu = û3
u · xuuu + 3 · û2

u · v̂u · xuuv + 3 · ûu · v̂2
u · xuvv + v̂

3
u · xvvv

+3 · (ûu · ûuu · xuu + (v̂u · ûuu + ûu · v̂uu) · xuv + v̂u · v̂uu · xvv)

+ûuuu · xu + v̂uuu · xv. (5.50)

Setting u = 0, we obtain from (5.48) - (5.50) using (5.46) and (5.47):

x̂(0, v) = x(0, v) = x̃(0, v) (5.51)

x̂u(0, v) = xu(0, v) = x̃u(0, v) (5.52)

x̂uu(0, v) = xuu(0, v) = x̃uu(0, v) (5.53)

x̂uuu(0, v) = xuuu(0, v) + r1(v) · xu(0, v) + r2(v) · xv(0, v)

= x̃uuu(0, v). (5.54)

From (5.51) - (5.54) we obtain

x̂v(0, v) = x̃v(0, v) ; x̂uv(0, v) = x̃uv(0, v)

x̂vv(0, v) = x̃vv(0, v) ; x̂uuv(0, v) = x̃uuv(0, v)

x̂uvv(0, v) = x̃uvv(0, v) ; x̂vvv(0, v) = x̃vvv(0, v). (5.55)

Therefore, x̂ and x̃ are C3 along l, which gives that x and x̃ are G3 along l.
✷

Remark 2: If there is only a single point xs on the junction line l which
is umbilic or in which one of the lines of curvature is tangent to l, this point
xs devides l in two parts which both (except for xs itself) fullfill theorem 5.
Since x and x̃ are continuous, we still can infer G3 of the surface from G2 of
the lines of curvature across l \ {xs}.
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If l and a line of curvature coincide, we have to demand G3 of the other line
of curvature across l for obtaining a G3 surface.

Remark 3: The proof of theorem 5 used the assumption that both lines
of curvature are G2 across l only for making sure that x and x̃ are G2 along
l. Therefore, we can rewrite theorem 5 in the following form:

Given are two surfaces x and x̃ which are G2 along a common line l.
Furthermore, every point on l is non-umbilical in x and x̃, and in no point
of l the lines of curvature of x and x̃ are tangent or perpendicular to l. Then
x and x̃ are G3 along l iff there is one family of lines of curvature which is
G2 across l.

Remark 4: Theorem 5 has some similarities to the linkage curve theorem
described in [22]. In this theorem, the sufficient condition for G2 of two
surfaces along a common line l is the continuity of the normal curvature of
a family of surface curves across l. That means, both theorem 5 and the
linkage curve theorem use curvature properties of families of curves across
the junction line to obtain conditions for geometric continuity of the surface.

5.3 Asymptotic Lines

Asymptotic lines are defined by the vector field (vx, vy)T that satisfies (see
[4]):

L · vx2 + 2 ·M · vx · vy +N · vy2 = 0. (5.56)

We have two real solution classes for negative Gaussian curvature, one solu-
tion class for zero Gaussian curvature and only complex solutions for positive
Gaussian curvature (see [4]). For negative Gaussian curvature, the direc-
tions of the asymptotic lines of the surface coincide with the directions of
the Dupin’s indicatrices (in this case a pair of hyperbolas). The defining
geometric property of asymptotic lines is a zero normal curvature in every
point of the surface. Here we only consider the case of negative Gaussian
curvature. Using the abbrevations

he = M2 − L ·N (5.57)

heu = 2 ·M ·Mu − Lu ·N − L ·Nu (5.58)

hev = 2 ·M ·Mv − Lv ·N − L ·Nv, (5.59)
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we can write two representatives of the solution classes in the following form:

V1 =

(
N −M −√

he

L−M +
√
he

)
(5.60)

V2 =

(
N −M +

√
he

L−M −√
he

)
. (5.61)

This yields for the partial derivatives:

V1u =

(
Nu −Mu − heu

2·√he

Lu −Mu + heu

2·√he

)
(5.62)

V1v =

(
Nv −Mv − hev

2·√he

Lv −Mv +
hev

2·√he

)
(5.63)

V2u =

(
Nu −Mu + heu

2·√he

Lu −Mu − heu

2·√he

)
(5.64)

V2v =

(
Nv −Mv +

hev

2·√he

Lv −Mv − hev

2·√he

)
. (5.65)

critical Points:
occur iff V1 = (0, 0)T and V2 = (0, 0)T . Since

(vx1 = 0) ∧ (vx2 = 0) ⇐⇒ (he = 0) ∧ (N =M)

(vy1 = 0) ∧ (vy2 = 0) ⇐⇒ (he = 0) ∧ (L =M),

this is only possible for L = M = N . This gives a zero Gaussian curvature.
Therefore, in the considered areas of negative Gaussian curvature there are
no critical points.

Continuity:

Theorem 6 Given are two surfaces x and x̃ which join along a common
line l. Furthermore, every point on l has negative Gaussian curvature in x
and x̃, and in no point of l one of the asymptotic lines of x and x̃ is tangent
to l. Then x and x̃ are G3 along l iff their asymptotic lines are G2 across l.
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Most parts of the proof are similar to the proof of theorem 5.
” ⇒ ”: similar to theorem 5.
” ⇐ ”: We assume that the junction line l is (0, v), 0 ≤ v ≤ 1.
The G2 condition of the asymptotic lines gives G2 of the surfaces along l (see
[22]). Thus, we can assume that x and x̃ are parametrized in a way that

x(0, v) = x̃(0, v) ; xu(0, v) = x̃u(0, v)

xv(0, v) = x̃v(0, v) ; xuu(0, v) = x̃uu(0, v)

xuv(0, v) = x̃uv(0, v) ; xvv(0, v) = x̃vv(0, v). (5.66)

From (5.66) we obtain

xuuv(0, v) = x̃uuv(0, v)

xuvv(0, v) = x̃uvv(0, v)

xvvv(0, v) = x̃vvv(0, v). (5.67)

Let ẋ1 and ẋ2 be the tangent vectors of the asymptotic lines on x. Further-
more, let ˙̃x1 and ˙̃x2 be the tangent vectors of the asymptotic lines on x̃. Then
(4.21), (5.60), (5.61) and (5.66) give

ẋ1(0, v) = (vx1 · xu + vy1 · xv)(0, v) = ˙̃x1(0, v) (5.68)

ẋ2(0, v) = (vx2 · xu + vy2 · xv)(0, v) = ˙̃x2(0, v) (5.69)

where vx1, vy1, vx2, vy2 are given by (5.60) and (5.61).

Let ẍ1 and ẍ2 be the second derivative vectors of the asymptotic lines of
x, and let ¨̃x1 and ¨̃x2 be the second derivative vectors of the asymptotic lines
of x̃. Then (4.23), (5.60) – (5.65) and (5.66) give

¨̃x1(0, v)− ẍ1(0, v) =
n · (x̃uuu − xuuu)

2 · √M2 − L ·N · (a1 · xu + b1 · xv) (5.70)

¨̃x2(0, v)− ẍ2(0, v) = −n · (x̃uuu − xuuu)

2 · √M2 − L ·N · (a2 · xu + b2 · xv) (5.71)

where

a1 = vx1 ·N (5.72)

b1 = vx1 · (2 ·M − 3 ·N + 2 · vx2) (5.73)

a2 = vx2 ·N (5.74)

b2 = vx2 · (2 ·M − 3 ·N + 2 · vx1). (5.75)
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(The assumption of negative Gaussian curvature along l ensures that
M2 − L ·N > 0 along l.)

Now the G2 condition of the asymptotic lines across l can be formulated
in the following way:

(¨̃x1(0, v)− ẍ1(0, v)) parallel to ẋ1(0, v) (5.76)

(¨̃x2(0, v)− ẍ2(0, v)) parallel to ẋ2(0, v). (5.77)

Using (5.68), (5.69), (5.70), (5.71) and the fact that xu and xv are linearly
independent, we can write (5.76) and (5.77) in the form

(n · (x̃uuu − xuuu)) · det1 = 0 (5.78)

(n · (x̃uuu − xuuu)) · det2 = 0 (5.79)

where

det1 = det

[
vx1 a1

vy1 b1

]
(5.80)

det2 = det

[
vx2 a2

vy2 b2

]
. (5.81)

(5.68), (5.69) and the assumption that the lines of curvature are not parallel
to l give

vx1 · vx2 �= 0. (5.82)

From (5.72) - (5.75), (5.80) and (5.81) we obtain

det1 · det2 = (vx1 · vx2)
3. (5.83)

This and (5.82) yield
det1 · det2 �= 0. (5.84)

From (5.78), (5.79) and (5.84) we obtain

(n · (x̃uuu − xuuu))(0, v) = 0. (5.85)

Continuing from (5.41), the rest of the proof is similar to the proof of theorem
5. ✷
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5.4 Isophotes

Isophotes are first discussed as a surface interrogation tool in [23]. A family
of isophotes is defined by an eye point e = (ex, ey, ez)T . Then the isophotes
are the equipotential lines of the scalar field

s(u, v) =
(e − x) · n
‖e − x‖ (5.86)

on the surface. That means, an isophote on a surface contains all surface
points which have the same angle between the eye vector (i.e., eye point
minus surface point) and the normal vector. Similar to section 5.1, we obtain
for the domain vector field:

V =

( −sv
su

)
(5.87)

Vu =

( −suv

suu

)
(5.88)

Vv =

( −svv

suv

)
. (5.89)

Critical points:
Given a point x0 = (x0, y0, z0)

T = x(u0, v0) on the surface, we want to find
all eye points e for which the corresponding isophotes have a critical point
in x0. The critical point conditions obtained by this approach will give us
information about the surface itself.
We assume that the surface is parametrized by the lines of curvature. Fur-
thermore, we assume a parametrization by the arc length of the lines of
curvature through x0. We want x to be transformed such that

x0 = 0 = (0, 0, 0)T (5.90)

x0u = xu(u0, v0) = (1, 0, 0)T (5.91)

x0v = xv(u0, v0) = (0, 1, 0)T . (5.92)

Then the assumption of parametrization by the lines of curvature yields

z0uv = zuv(u0, v0) = 0 (5.93)

z0uu = zuu(u0, v0) = κ1 (5.94)

z0vv = zvv(u0, v0) = κ2 (5.95)
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where κ1 and κ2 are the principal curvatures of x in x0.
(5.91) and (5.92) yield

n0 = n(u0, v0) = (0, 0, 1)T . (5.96)

From (5.90) and (5.96) we obtain

n0 · (e − x0) = ez. (5.97)

Applying (5.90) - (5.97) to (5.87), we obtain for V0 = V (u0, v0):

V0 =
1

‖e − x0‖3
·
(
ey · (κ2 · (e − x0)

2 − n0 · (e − x0))
−ex · (κ1 · (e − x0)

2 − n0 · (e − x0))

)
. (5.98)

We seek all points e for which V0 = (0, 0)T . For that purpose we make a case
distinction:
case 1: ex = 0 and ey = 0
which makes V0 = (0, 0)T obviously. It means that e is on the normal line of
x0.
case 2: ex = 0 and ey �= 0.
ex = 0 means that e is in the plane through x0 which contains n and the
principal direction x0v. We have to achieve

κ2 · (e − x0)
2 = n0 · (e − x0). (5.99)

Setting α := <) (n, e − x0), we can write (5.99) in the form

κ2 · ‖e − x0‖ = cosα. (5.100)

Setting r2 := 1/κ2, (5.100) takes the form

‖e − x0‖ = r2 · cosα. (5.101)

All (and only these) points of a circle with the center x0 +
r2

2
· n0 and the

radius r2

2
will satisfy (5.101), (see figure 5.1).

case 3: ex �= 0 and ey = 0:
analogous to case 2. As solution set for e we obtain a circle in the plane
containing n0 and x0u with the center x0 +

1
2·κ1

· n0 and the radius 1
2·κ1

.
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α
x

x0

e

x0+r 2*n0

r 2

| e−x0|

Figure 5.1: Cross section through x0, containing n0 and x0v. All points e on
the circle produce a critical point in x0.

case 4: ex �= 0 and ey �= 0.
In this case we have to achieve

κ2 · (e − x0)
2 = n0 · (e − x0)

and κ1 · (e − x0)
2 = n0 · (e − x0), (5.102)

which is only possible for κ1 = κ2, i.e. x0 is an umbilical point. Then the
solution set for e is a sphere with the center x0 +

1
2·κ1

·n0 = x0 +
1

2·κ2
·n0 and

the radius 1
2·κ1

= 1
2·κ2

.

Figure 5.2 illustrates the solution of the critical point problem for
isophotes. The planes p1 and p2 through x0 contain n0 and one principal
direction in x0. The circle c1 in p1 has the center x0 +

1
2·κ1

·n0 and the radius
1

2·κ1
. The circle c2 in p2 has the center x0 +

1
2·κ2

· n0 and the radius 1
2·κ2

. (κ1

and κ2 denote the principal curvatures in x0). The normal line of x in x0

is marked nl. Then the set of all eye points producing a critical point in
isophotes is nl ∪ c1 ∪ c2.

Remark 5: For a negative Gaussian curvature in x0 the two circles shown
in figure 5.2 are located on different sides of the tangent plane in x0.
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x

x0

p1

p2

c1

c2

nl

Figure 5.2: Configuration for the critical point problem for isophotes - non-
umbilical point.

Remark 6: For κ1 = 0 (κ2 = 0 respectively) the solution circle c1 (c2
respectively) turns out in the set of all directions in p1 (p2 respectively). If
we define isophotes not by an eye point but by an eye direction r, we obtain
a critical point in x0 iff at least one of the following conditions is satisfied:
- r is parallel to n0,
- κ1 = κ2 = 0 (flat point),
- κ1 = 0, κ2 �= 0 and r is in p1,
- κ1 �= 0, κ2 = 0 and r is in p2.

”Thickness”:
Since we know the scalar field s, we can use (4.38) and (4.39) to compute
the ”thickness” of the isophotes.

Continuity:
Given are two surfaces x and x̃ which join along a common line l. A family
of isophotes which have in no point of l a critical point is G2 across l if x and
x̃ are G3 along l.
Since the curvature of isophotes contains only the partial derivatives of x
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and x̃ of the order ≤ 3, this property is obvious (and even formulated for Gr

surfaces and Gr−1 isophotes in [23]).
Sufficient conditions for G3 of surfaces – based on G2 of isophotes – are still
unknown.

5.5 Reflection Lines

Reflection lines ([17],[16]) are a standard surface interrogation tool in car
design.
Given is a surface x, an eye point e, a plane and a family of parallel straight
lines in the plane. The plane should be called light plane and can be described
in two forms: as a point p0 and two orthonormalized vectors p1 and p2, or
simpliy as an (unnormalized) vector p. In the first case the plane contains
all points p0+λ ·p1+µ ·p2(λ, µ ∈ IR), in the second case the plane is defined
as containing the point e + p and being perpendicular to p. Here we want
to use both forms of describing the plane.
The surface x is considered mirror-like. Reflection lines on the surface x are
the mirror image of the family of straight lines in the plane while looking
from the eye point e (see figure 5.3).
The definition of reflection lines depends on a particular configuration. This
configuration contains the location of the eye point, the light plane and the
direction of the lines in the light plane. We want to compute the curvature
of the reflection lines for a given surface and a given configuration. The
light plane is given by a point p0 and two orthonormalized vectors p1 and
p2. The family of straight lines is given by two numbers cx and cy which
satisfy cx2 + cy2 = 1 and contains all lines in the light plane which are in the
direction cx · p1 + cy · p2.

Let D be the domain of the surface x. We define another surface y over
D in the following way:
For every point (u, v) ∈ D, we take x(u, v), compute the surface normal
n(u, v) in x(u, v), compute the reflected ray a of x − e in the tangent plane
of x(u, v) and intersect this ray with the light plane given in the configuration.
The intersection point of a and the light plane is considered as y(u, v) (see
figure 5.4)
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e

n

x

p

g’

g

lightplane

Figure 5.3: Reflection lines: g′ is the mirror image of the straight line g on x

The surface y lies completely in the light plane. Therefore, all partial
derivative vectors of y are in the light plane as well.

Now we want to develop the formula of y and its partial derivatives. The
reflected ray a can be described in the form

a = 2 · ((e − x) · n) · n + x − e. (5.103)

This yields for the partial derivatives of a:

au = 2 · ((e − x) · nu) · n
+ 2 · ((e − x) · n) · nu

+ xu (5.104)

av = 2 · ((e − x) · nv) · n
+ 2 · ((e − x) · n) · nv

+ xv (5.105)
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e
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D
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a

y

Figure 5.4: Reflection lines: definition of the surface y and the corresponding
vector fields W , V and WW

auu = 2 · ((e − x) · nuu) · n
+ 4 · ((e − x) · nu) · nu

+ 2 · ((e − x) · n) · nuu

+ 2 · (xuu · n) · n
+ xuu (5.106)

auv = 2 · ((e − x) · nuv) · n
+ 2 · ((e − x) · nv) · nu

+ 2 · ((e − x) · nu) · nv

+ 2 · ((e − x) · n) · nuv

+ 2 · (xuv · n) · n
+ xuv (5.107)
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avv = 2 · ((e − x) · nvv) · n
+ 4 · ((e − x) · nv) · nv

+ 2 · ((e − x) · n) · nvv

+ 2 · (xvv · n) · n
+ xvv. (5.108)

The light plane is given by a point p0 and two vectors p1 and p2. To intersect
the reflected ray with the light plane, we have to solve the system of equations
x+α · a = p0 + β ·p1 + γ ·p2 for α, β and γ. (We assume that the reflected
ray a is not parallel to the plane, i.e. there is a unique solution of the system
of equations.) We obtain for α:

α =
det[p0 − x,p1,p2]

det[a,p1,p2]
. (5.109)

Using the abbrevation p3 := p1 × p2, we can write α in the following form:

α =
(p0 − x) · p3

a · p3

. (5.110)

This yields for the partial derivatives of α:

αu = −xu · p3

a · p3

− (au · p3) · ((p0 − x) · p3)

(a · p3)2
(5.111)

αv = −xv · p3

a · p3

− (av · p3) · ((p0 − x) · p3)

(a · p3)2
(5.112)

αuu = − xuu · p3

a · p3

+ 2 · ((p0 − x) · p3) · (au · p3)
2

(a · p3)3

+
2 · (xu · p3) · (au · p3)− ((p0 − x) · p3) · (auu · p3)

(a · p3)2
(5.113)

αuv = − xuv · p3

a · p3

− ((p0 − x) · p3) · (auv · p3)

(a · p3)2

+
(xu · p3) · (av · p3) + (xv · p3) · (au · p3)

(a · p3)2

+ 2 · ((p0 − x) · p3) · (au · p3) · (av · p3)

(a · p3)3
(5.114)
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αvv = − xvv · p3

a · p3

+ 2 · ((p0 − x) · p3) · (av · p3)
2

(a · p3)3

+
2 · (xv · p3) · (av · p3)− ((p0 − x) · p3) · (avv · p3)

(a · p3)2
. (5.115)

Now we have for y:
y = x + α · a (5.116)

which yields for the partial derivatives:

yu = xu + αu · a + α · au (5.117)

yv = xv + αv · a + α · av (5.118)

yuu = xuu + αuu · a + 2 · αu · au + α · auu (5.119)

yuv = xuv + αuv · a + αu · av + αv · av + α · auv (5.120)

yvv = xvv + αvv · a + 2 · αv · av + α · avv. (5.121)

Now we consider the vector field W over y which is defined by

W = cx · p1 + cy · p2 (5.122)

This constant vector field produces the family of straight lines as tangent
curves. Using the results from section 4.2, we can easily compute a vector
field V in the domain which is corresponding to W :

V =

(
vx
vy

)
=

(
det[p1 × p2, cx · p1 + cy · p2,yv]
− det[p1 × p2, cx · p1 + cy · p2,yu]

)

= cx ·
(

det[p1 × p2,p1,yv]
− det[p1 × p2,p1,yu]

)

+ cy ·
(

det[p1 × p2,p2,yv]
− det[p1 × p2,p2,yu]

)
. (5.123)

Using the assumption that p1 and p2 are orthonormalized, we can write V
in the form

V = cx ·
(

p2 · yv

−p2 · yu

)
+ cy ·

( −p1 · yv

p1 · yu

)
. (5.124)
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This gives for the partial derivatives:

Vu = cx ·
(

p2 · yuv

−p2 · yuu

)
+ cy ·

( −p1 · yuv

p1 · yuu

)
(5.125)

Vv = cx ·
(

p2 · yvv

−p2 · yuv

)
+ cy ·

( −p1 · yvv

p1 · yuv

)
. (5.126)

Now we can compute a vector fieldWW over x which is corresponding to V in
the domain. The tangent curves ofWW are identically to the reflection lines
defined above. Knowing V , Vu and Vv, we can easily compute their curvature.

Critical points:
The appearance of critical points on the surface x depends on the particular
configuration. We want to consider two kinds of critical points: first and
second order critical points.
Given is the surface x, an eye point e = (ex, ey, ez)T and a light plane (now
defined by a vector p = (px, py, pz)T with p �= 0). We define:
x has a first order critical point in x0 iff for every family of parallel lines in
the light plane the reflection line vector field has a critical point in x0. x has
a second order critical point in x0 iff there is a family of parallel lines in the
light plane which produces a critical point in the reflection line vector field
in x0.

The condition for a critical point is V = (0, 0)T . This, equation (5.124),
the assumption cx2 + cy2 = 1, and the assumption of orthonormalization
of p1 and p2 yields that we only have to consider yu and yv. We have a
second order critical point iff yu and yv are linearly dependent. (In fact,
if we have yv = λ · yu and yu �= 0, we set cx := p1·yu√

(p1·yu)2+(p2·yu)2
and

cy := p2·yu√
(p1·yu)2+(p2·yu)2

. This obviously yields V = (0, 0)T .)

Therefore, the necessary and sufficient condition for a second order critical
point is

yu × yv = 0. (5.127)

The necessary and sufficient condition for a first order critical point is

yu = 0 and yv = 0. (5.128)

We assume that the reflected ray in x is not parallel to the plane, i.e.

a · p �= 0. (5.129)

70



Furthermore, we use the following abbrevations:

h1 = p2 + 2 · ((e − x) · n) · (p · n) (5.130)

h2 = (e − x) · p + p2. (5.131)

We start with the treatment of first order critical points.
We assume that the surface is locally arc length parametrized by the lines
of curvature. Furthermore, we assume x = 0 at the considered point. This
yields (5.90)-(5.97) for x = x0 and

p · n = pz (5.132)

a = (−ex,−ey, ez)T . (5.133)

Then we can write yu and yv in the form:

yu =
1

(a · p)2 · (h1 ·G1 + 2 · h2 · κ1 ·G2) (5.134)

yv =
1

(a · p)2 · (h1 ·G3 + 2 · h2 · κ2 ·G4) (5.135)

where κ1 and κ2 are the principal curvatures in the principal directions xu

and xv and

G1 =


 ez · pz − ey · py

px · ey
−ez · px


 (5.136)

G2 =


 ey · ez · py − ex2 · pz − ez2 · pz

−(ez · px+ ex · pz) · ey
px · ex2 + px · ez2 + ex · ey · py


 (5.137)

G3 =


 ex · py
ez · pz − ex · px

−ez · py


 (5.138)

G4 =


 −(ey · pz + ez · py) · ex
ez · ex · px− ey2 · pz − ez2 · pz
ey · ex · px+ ey2 · py + py · ez2


 . (5.139)

From (5.133) and (5.136) - (5.139) we obtain

−G1 ×G2 = G3 ×G4 = (ex · ey · (a · p)) · p. (5.140)
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We make a case distinction:
case 1: ex �= 0 and ey �= 0.
We know from (5.140) and (5.129) that G1 and G2 are linearly independent.
Therefore, to get yu = 0 we have to achieve

h1 = 0 (5.141)

and h2 · κ1 = 0. (5.142)

Since h1 − h2 = a · p and (5.129), we get for (5.142):

κ1 = 0. (5.143)

In a similar way we obtain the conditions for yv = 0: (5.141) and

κ2 = 0. (5.144)

We thus have a first order critical point at a flat point satisfying (5.141).

case 2: ex = 0 and ey �= 0.
In this case we have

yu =
h1 − 2 · κ1 · ez · h2

(a · p)2 ·G1 (5.145)

yv =
ez · h1 − 2 · κ2 · (e − x)2 · h2

(a · p)2 ·

 0
pz
−py


 . (5.146)

Since we know (5.129) and ‖G1‖2 = (a · p)2 + px2 · (e − x)2 �= 0, we get the
conditions for yu = 0 and yv = 0:

h1 = 2 · κ1 · ez · h2 (5.147)

ez · h1 = 2 · κ2 · (e − x)2 · h2 (5.148)

case 3: ex �= 0 and ey = 0.
similar to case 2, we obtain the conditions

h1 = 2 · κ2 · ez · h2 (5.149)

ez · h1 = 2 · κ1 · (e − x)2 · h2. (5.150)
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case 4: ex = 0 and ey = 0.
can be considered as a special case of case 2 or case 3. We obtain the
conditions (5.147) and (5.149).

The result of our case distinction is the following: For every point on
the surface we can find an appropriate configuration so that this point is a
first order critical point. (We even can choose p arbitrary. If the surface
point is a flat point, we can use case 1 for computing a suitable eye point.
If the surface point is an umbilical (but not flat) point, we can use case 4.
For all other surface points we can use case 2 or 3 to find a suitable eye point.)

Now we want to treat second order critical points. Using the assumption
of locally arc length parametrization by the lines of curvature and x = 0 at
the considered point, we can write yu × yv in the following form:

yu × yv =
f

(a · p)3 · p (5.151)

where

f = ez · h1
2

− 2 · (κ1 · ex2 + κ2 · ey2) · h1 · h2

− 2 · (κ1 + κ2) · ez2 · h1 · h2

+ 4 · ez · κ1 · κ2 · (e − x)2 · h2
2. (5.152)

Let K := κ1 · κ2 be the Gaussian curvature and H := (κ1 + κ2)/2 be the
mean curvature of x. Furthermore, let κ be the normal curvature of x in the
direction given by the projection of e− x into the tangent plane of x. Then
Euler’s theorem yields κ = κ1·ex2+κ2·ey2√

ex2+ey2
and we can write f in the form

f = ez · h1
2

− 2 · (κ ·
√
(e − x)2 − ez2 + 2 ·H · ez2) · h1 · h2

+ 4 · ez ·K · (e − x)2 · h2
2. (5.153)

The necessary and sufficient condition for a second order critical point is

f = 0. (5.154)

73



W

Wp

y

p0

s

Figure 5.5: Reflection lines as a scalar field. Shown is the light plane. s is
the distance of y to the line p0 + λ ·W . Since we know ‖W‖ = ‖Wp‖ = 1
and W ·Wp = 0, we obtain s = Wp · (y − p0)

”Thickness:”
The ”thickness” of reflection lines has a nice practical meaning: analyzing a
surface using reflection lines the designer moves his/her eye and observes how
fast the reflection lines ”move” on the surface. The ”thickness” is a measure
of how fast the reflection lines are moving.

We can consider reflection lines as obtained by a scalar field. If we define
Wp as the perpendicular vector of W (using equation (5.122)) in the light
plane, we obtain

Wp = −cy · p1 + cx · p2. (5.155)

Then we can write the scalar field in the form

s = Wp · (y − p0) (5.156)

su = Wp · yu (5.157)

sv = Wp · yv (5.158)

Now we can use (4.38) and (4.39) to compute the ”thickness” of reflection
lines. See figure 5.5 for an illustration.

Continuity:
Given are two surfaces x and x̃ which join along a common line l. A family
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of reflection lines which have in no point of l a critical point is G2 across l if
x and x̃ are G3 along l.
Since the curvature of reflection lines contains only the partial derivatives of
x and x̃ of the order ≤ 3, this property is obvious.
Sufficient conditions for G3 of surfaces – based on G2 of reflection lines – are
still unknown.
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Chapter 6

Tangent Curves and Surface
Interrogation

A surface designed by a CAD-system may look perfect in the wire frame
(and even in the shaded) representation. Nevertheless the surface can have
imperfections, an undesired behavior of characteristic properties, or areas
which simply do not look ”nice”. It is the task of surface interrogation
algorithms to point out those imperfections on the surface.

Surface interrogation algorithms focus on the following two points:
a) point out geometric properties of the surface which usually can be de-
scribed in mathematical terms. These properties can be:
– geometric continuity on the patch borders,
– special points on the surface (flat points, umbilical points...),
– convexity properties (change of the sign of the curvatures),
– strong and frequent variations of the curvatures.
b) Give a global impression about smoothness and fairness of the surface.

A variety of surface interrogation algorithms have been developed which
emphasize different aspects of the points a) and/or b). A survey on surface
interrogation algorithms is given in [8] and [9].

The tangent curves on surfaces discussed in chapter 5 are wellknown as
standard surface interrogation tools. In this chapter we want to discuss the
additional usage of the curvature plots and (if possible) the ”thickness” plots
of those curves as surface interrogation tools. This gives more information
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about the geometric properties of the surface. (In fact, the usual application
of those tangent curves gives us only first and second order information (i.e.,
properties which contain only the first and second partial derivatives of the
surface). Curvature visualization gives additional third order information.)

The test surface:
Figure 6.1 shows the ray traced image of the test surface – a shoe shaped (non-
rational) bicubic B-spline surface. This surface consists of 29 × 10 patches
and is C2 at the patch borders. We hardly can see surface imperfections
in the picture. Also a wire frame representation of this surface would look
perfect.

Tangent curve ”thickness” for surface interrogation:
We compute the ”thickness” of the tangent curves for an appropriate num-
ber of surface points and color code these values as shown in figure 3.1. 1

Using the ray tracing approach it is easy to pick out an appropriate number
of surface points: we have one surface point for every pixel point. For other
rendering techniques we have to pick out sample points on the surface and
apply an interpolation between them.

Tangent curve curvature for surface interrogation:
We color code the curvature of the tangent curves as shown in figure 3.1.
Concerning the number of appropriate sample points, the same statement
as for the tangent curve ”thickness” applies. Instead of the tangent curve
curvature we also can take the geodesic curvature of the tangent curves. This
makes it possible to consider a sign in the curvature visualization.

Now we consider the particular tangent curves:
Contour lines:
We consider figure 6.2. The upper left picture shows the usual contour line
visualization described in section 4.5. The upper right picture is the vi-
sualization of the contour line ”thickness”. The lower left picture shows
the curvature plot of the contour lines, the lower right picture shows their
geodesic curvature. All of the four pictures treat the same family of contour

1For the following pictures the negative values of the ”thickness” were actually taken.
This way the ”thickness” plots appear in a green color which looked better than in red.
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lines.

The geodesic curvature plot shows frequent changes of the curvature sign
(i.e., changes of red and green areas) in the right-hand part of the surface.
That means, the contour lines in this area have inflection points. This is
hardly detectable from the upper left picture.

The curvature visualization looks smooth, we can’t see the patch borders.
This is an indicator for G2-continuity of the surface.

Since the location of the critical points of the contour lines depends on
the particular configuration (i.e., on the direction vector r), the highlights
in the ”thickness” and curvature plots do not directly provide information
about the surface.

Lines of curvature
The upper two pictures of figure 6.3 show the geodesic curvature of the two
families of lines of curvature. The lower two pictures are magnifications of the
upper ones. The discontinuities at the patch borders show that the surface
is not G3. The umbilical points of the surface can be detected as highlights
in the curvature plots.

Asymptotic lines
The upper two pictures of figure 6.4 show the geodesic curvature of the
two families of asymptotic lines, the lower two pictures are the magnifica-
tions. Since the asymptotic lines exist only for surface areas with non-positive
Gaussian curvature, the areas with positive Gaussian curvature are set to the
background color. The discontinuities on the patch borders show that the
surface is not G3.

Isophotes
The upper left picture of figure 6.5 shows the visualization of a family of
isophotes on the surface, the upper right picture shows their ”thickness”,
the lower pictures show curvature and geodesic curvature of the isophotes.
Figure 6.6 shows a magnification of the isophote visualization and the visu-
alization of their geodesic curvature.

The ”thickness” visualization clearly shows ”wrinkles” (i.e., strip-shaped
areas where bright and dark colors change rapidly). This shows a surface
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imperfection in this area. The discontinuities on the patch borders show
that the surface is not G3.

We can use the critical points (i.e., the highlights in the curvature and
”thickness” plots) to detect flat points on the surface: considering an eye
direction (and not an eye point) and moving this eye direction around, a
critical point on the surface might move around as well, or it might remain
on the same position. A stationary highlight while moving the eye direction
is an indicator for a flat point.

Reflection lines
The upper left picture of figure 6.7 shows the visualization of a family of re-
flection lines on the surface, the upper right picture shows their ”thickness”,
the lower pictures show their curvature and geodesic curvature. Figure 6.8
shows the magnification of the reflection line visualization and the geodesic
curvature.

In the upper left picture of figure 6.7 we can see aliasing effects near
the edges of the surface. These effects do not appear in the ”thickness”
and curvature plots because those plots contain only continous color changes
(except for the patch borders).

As in the case of isophotes, the ”thickness” visualization of reflection
lines shows ”wrinkles” – approximately in the same areas as in the isophote
”thickness” visualization. We also see the curvature dicontinuities on the
patch borders in the curvature plots.

The location of the critical points depends on the particular configuration,
their appearance on the surface does not contain direct information about
the surface geometry.
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Figure 6.1: Ray traced test surface
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Figure 6.2: Contour lines, their ”thickness” and curvature
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Figure 6.3: Geodesic curvature of the lines of curvature
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Figure 6.4: Geodesic curvature of the asymptotic lines

83



Figure 6.5: Isophotes, their ”thickness” and curvature
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Figure 6.6: Isophotes and their geodesic curvature (magnification)
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Figure 6.7: Reflection lines, their ”thickness” and curvature
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Figure 6.8: Reflection lines and their geodesic curvature (magnification)
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Chapter 7

Open Questions

This work leaves the following open questions and thus material for future
research:
– In theorem 2 we have shown that the curvature and the perpendicular cur-
vature together contain all information about the normalized original vector
field. Therefore, it makes sense to ask for an appropriate combination of both
scalar fields from which we can recognize the behavior (i.e. for instance, the
topology) of the vector field immediately. At least for the special case of
linear vector fields this question is worth dealing with.
– The theory of vector field curvature should be extended to the 3D case.
Some basic approaches are already given in section 2.8. Also, the visualiza-
tion of the curvature of 3D vector fields requires further research.
– We should ask for sufficient conditions for G3 of surfaces – based on G2 of
isophotes or reflection lines. In general, we should ask for sufficient condi-
tions for Gr of surfaces based on Gr−1 of lines of curvature, asymptotic lines,
isophotes or reflection lines.
– The fact that we can compute the curvature of lines of curvature, asymp-
totic lines, isophotes and reflection lines on a surface exactly gives reason to
try to use it as the base of surface fairing algorithms.
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Hypotheses

1) Tangent curves (stream lines, characteristic lines) are a powerful tool for
describing, analyzing and visualizing vector fields.

2) Although tangent curves are in general not describable as parametric
curves, their curvatures can be computed for every point of the vector field
(except for critical points). Thus, the curvature of a vector field can be de-
fined as a scalar field which contains the curvature of the tangent curve for
every point of the vector field. Using the concepts of normalized vector fields
and vector field divergence, the curvature of vector fields can be expressed in
a simple form.

3) The following properties are shown for the curvature of vector fields:

The rotated vector field of a 2D vector field V is obtained by rotating all
vectors of V by a fixed angle. The curvature of a 2D vector field V and the
curvature of its perpendicular (i.e. rotated by the angle π/2) vector field give
the curvatures of all rotated vector fields of V . Furthermore, the curvature
and the perpendicular curvature of V define all vectors of V uniquely. In
the neighborhood of a non-degenerate critical point of a 2D-vector field V ,
the curvature or the perpendicular curvature (or both curvatures) tends to
infinity.

4) Many applications of vector field visualization deal with linear (or bilin-
ear) vector fields. The curvatures of these special vector fields have further
characteristic properties:

For linear vector fields (2D or 3D), the curvature along a ray with its
origin in the critical point is inversely proportional to the distance to the
critical point. The same statement is true for the torsion of tangent curves
in linear 3D vector fields.
Between a linear 2D vector field V and its curvature and perpendicular cur-
vature (both together considered as a new vector field) there is a dual corre-
lation.

5) The visualization of their curvatures is a useful method for visualizing
vector fields. In the resulting pictures the critical points of the vector fields



are clearly detectable as highlights. Since numerical integrating of the curves
is not necessary (in contrast to previous methods of tangent curve visual-
ization), there is no risk of destroying the topology of the original vector
field. The thus obtained visualizations of the curvature of vector fields are
non-confusing and without overloading or ambiguities.

6) The concept of curvature of tangent curves can be extended to tangent
curves on surfaces. They can be described in two ways: as a 3D vector
field over the surface and as a 2D vector field in the domain of the surface.
Both descriptions can be transferred into each other. Both descriptions give
the curvature and the geodesic curvature of the tangent curves on the surface.

7) Visualizing particular tangent curves on surfaces, they appear with a
varying ”thickness” at different locations on the surface. The ”thickness”
can be computed and visualized. It reflects certain characteristics of the sur-
face.

8) For particular tangent curves on surfaces, the formulas for their curva-
ture, geodesic curvature and ”thickness” are shown. Those tangent curves
are contour lines, lines of curvature, asymptotic lines, isophotes and reflec-
tion lines. Conditions for the appearance of critical points are formulated.

9) The visualization of the tangent curves on surfaces is a useful surface
interrogation method.

10) The G2 continuity of lines of curvature and asymptotic lines gives geo-
metric conditions (necessary and sufficient) for G3 continuity of surfaces.
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Thesen

1) Tangentenkurven (stream lines, characteristic lines) sind ein wirkungsvolles
Mittel zur Beschreibung, Analyse und Visualisierung von Vektorfeldern.

2) Obwohl Tangentenkurven im allgemeinen nicht als parametrische Kurven
beschreibbar sind, können ihre Krümmungen für jeden Punkt des Vektor-
feldes (mit Ausnahme kritischer Punkte) bestimmt werden. Die Krümmung
eines Vektorfeldes kann somit definiert werden als skalares Feld, das in je-
dem Punkt (mit Ausnahme kritischer Punkte) die Krümmung der Tangen-
tenkurve durch diesen Punkt hat. Die Krümmung von 2D-Vektorfeldern
kann auf einfache Weise mit den Konzepten ”normiertes Vektorfeld” und
”Vektorfeld-Divergenz” beschrieben werden.

3) Für Krümmungen von Vektorfeldern werden folgende Eigenschaften gezeigt:

Das rotierte Vektorfeld eines 2D-Vektorfeldes V entsteht durch Rotieren
aller Vektoren von V um einen festgelegten Winkel. Aus der Krümmung eines
2D-Vektorfeldes und der Krümmung des dazu senkrechten (d.h. mit dem
Winkel π/2 rotierten) Vektorfeldes ergibt sich die Krümmung aller rotierten
Vektorfelder von V . Weiterhin sind aus der Krümmung und der senkrechten
Krümmung von V die Richtungen aller Vektoren aus V eindeutig bestimmt.
In der Umgebung nichtausgearteter kritischer Punkte eines 2D-Vektorfeldes
V divergiert die Krümmung von V oder die senkrechte Krümmung von V
(oder beide Krümmungen) gegen Unendlich.

4) Viele praktische Anwendungen der Vektorfeld-Visualisierung arbeiten mit
linearen (oder bilinearen) Vektorfeldern. Für diese speziellen Vektorfelder
ergeben sich folgende weitere Eigenschaften:

Für lineare Vektorfelder (2D und 3D) verhält sich die Krümmung entlang
eines im kritischen Punkt beginnenden Strahls umgekehrt proportional zum
Abstand zum kritischen Punkt. Die gleiche Aussage gilt für die Torsion der
Tangentenkurven bei 3D-Vektorfeldern.



Zwischen einem linearen 2D-Vektorfeld und seinem Krümmungs- und senkrechten
Krümmungsfeld (beide zusammen als neues Vektorfeld aufgefasst) ergibt sich
ein dualer Zusammenhang.

5) Die Visualisierung der Krümmungen ist ein wirkungsvolles Mittel zur
Visualisierung von Vektorfeldern. In den entstehenden Bildern sind die kri-
tischen Punkte gut als Highlights erkennbar. Da (im Gegensatz zu bish-
erigen Verfahren der Tangentenkurven-Visualisierung) ein numerisches Inte-
grieren der Kurve entfällt, besteht auch keine Gefahr, dabei die Topologie
des originalen Vektorfeldes zu zerstören. Die entstehenden Visualisierungen
für Krümmungen von Vektorfeldern sind übersichtlich und nicht mehrdeutig.

6) Das Konzept der Krümmungen von Tangentenkurven kann auf Tangen-
tenkurven auf Freiformflächen erweitert werden. Diese sind auf zwei Arten
beschreibbar: als 3D-Vektorfeld über der Fläche oder als 2D-Vektorfeld im
Parameterraum der Fläche. Beide Beschreibungen können in die jeweils an-
dere überführt werden. Aus beiden Beschreibungen lassen sich Krümmung
und geodätische Krümmung der Tangentenkurven auf der Fläche bestimmen.

7) Bei der Visualisierung von bestimmten Tangentenkurven auf Flächen
haben diese verschiedene ”Dicken” an unterschiedlichen Stellen der Fläche.
Diese ”Dicke” der Tangentenkurven kann berechnet und visualisiert werden
und hängt von Charakteristika der Fläche ab.

8) Für bestimmte Tangentenkurven auf Flächen werden die Formeln für
Krümmung, geodätische Krümmung und ”Dicke” hergeleitet. Diese Tan-
gentenkurven sind Konturlinien, Linien maximaler Krümmung, Asymptoten-
linien, Isophoten und Reflexionslinien. Gleichzeitig werden Bedingungen für
das Auftreten kritischer Punkte bei diesen Tangentenkurven formuliert.

9) Die Krümmungen dieser Tangentenkurven kann zur Qualitätsanalyse von
Flächen (surface interrogation) genutzt werden.

10) Aus derG2-Stetigkeit von Linien maximaler Krümmung und von Asymp-
totenlinien werden geometrische Bedingungen (notwendig und hinreichend)
für die G3-Stetigkeit von Flächen hergeleitet.
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