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Abstract—Topological methods give concise and expressive visual representations of flow fields. The present work suggests a
comparable method for the visualization of human brain diffusion MRI data. We explore existing techniques for the topological analysis
of generic tensor fields, but find them inappropriate for diffusion MRI data. Thus, we propose a novel approach that considers the
asymptotic behavior of a probabilistic fiber tracking method and define analogs of the basic concepts of flow topology, like critical
points, basins, and faces, with interpretations in terms of brain anatomy. The resulting features are fuzzy, reflecting the uncertainty
inherent in any connectivity estimate from diffusion imaging. We describe an algorithm to extract the new type of features, demonstrate
its robustness under noise, and present results for two regions in a diffusion MRI dataset to illustrate that the method allows a

meaningful visual analysis of probabilistic fiber tracking results.

Index Terms—Diffusion tensor, probabilistic fiber tracking, tensor topology, uncertainty visualization.

1 INTRODUCTION

In diffusion-weighted MRI (magnetic resonance imaging), signal in-
tensity is modulated by the Brownian motion of water molecules [28].
In the human brain, this allows conclusions about tissue microstruc-
ture, since it restricts molecular motion [21]. A popular variant of
such diffusion imaging is diffusion tensor MRI (DT-MRI), which de-
rives a second-order tensor field to model the apparent diffusivities
from a series of measurements. Since only some of the methods dis-
cussed in this paper employ a tensor model, we prefer the more general
term “diffusion MRI” and only talk about DT-MRI when referring to
a second-order tensor model as suggested by Basser et al. [2].

Since their introduction by Helman and Hesselink [14], the con-
cise representations generated by topological methods have become
a powerful tool for the visualization of vector fields describing fluid
flows (cf. [26] for an overview). These methods partition the domain
into regions in which all streamlines connect the same source to the
same sink, or in other words, into regions in which the flow exhibits
the same asymptotic behavior. The resulting topological skeleton re-
duces the flow to the structurally significant information.

There exists a variety of fiber tracking techniques to investigate con-
nectivity within the brain based on diffusion MRI data (cf. the review
in [22]). The fact that connectivity is a fundamental topological notion
suggests that a topological visualization of diffusion MRI data may be
beneficial. It is the goal of the present paper to find such a method.

A natural starting point for our investigation is the work by Delmar-
celle and Hesselink [10], who have generalized the concepts of topo-
logical vector field visualization to second-order tensor fields. Based
on their fundamental definitions, further research has been conducted
on 3D tensor topology [15, 30, 31]. More specifically, Zheng et al.
[32] have argued that applying tensor topology to DT-MRI is likely
to prove beneficial. While they expect noise artifacts to dominate a
naive topological visualization of DT-MRI data sets, they suggest that
additional selection of the most important features would produce a
“simple yet powerful representation” [31]. However, no results from
applying tensor topology to DT-MRI have been published so far. In
Section 2, we discuss the interpretation of the features from tensor
topology and present both experimental results and theoretical argu-
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ments which suggest that topological features are, unfortunately, not
useful in the context of DT-MRI.

After reviewing more related work in Section 3, we introduce a
new paradigm for transferring the basic notions of topological flow
visualization to diffusion MRI data in Section 4. In contrast to the
existing “tensor topology”, we refer to it as “diffusion MRI topology”
to reflect the fact that we neither restrict ourselves to a second-order
diffusion tensor model, nor do we expect our approach to be useful
for tensor fields that describe different phenomena (e.g., stress tensors
[30]). In particular, we do not question the fact that tensor topology
holds the potential to extract interesting features from generic tensor
fields. In Section 5, we propose a method that can be used to extract
the new type of features. In Section 6, we demonstrate the robustness
of our method under noise and present additional experimental results
to illustrate that the novel features allow a meaningful interpretation
of the data. Finally, in Section 7, we conclude the paper and discuss
possible directions for future work.

2 DEGENERATE LINES IN DT-MRI FIELDS

In topological flow visualization, critical points play a central role.
They are the points at which the vector field magnitude vanishes
and the only locations at which streamlines intersect. The expressive
power of topological flow visualizations is owed to the clear physical
meaning of the critical points: they can be classified as sinks, sources,
and saddles, which are of distinct importance in flow fields.

Tensor topology as defined by Delmarcelle and Hesselink [10] is the
topology of hyperstreamlines, i.e., the integration lines of eigenvec-
tors. The analogs of critical points are now “degenerate” locations in
which at least two of the tensor’s eigenvalues are equal. At these loci,
the corresponding eigenvectors become ill-defined and hyperstream-
lines intersect. At type P (planar) degeneracies, the larger two eigen-
values are equal (major and medium hyperstreamlines intersect), while
type L (linear) features involve the smaller eigenvalue pair. Zheng et
al. [30] have proven that in generic 3D tensor data, type L and type P
features form stable lines, and they have presented several algorithms
to extract them.

Unfortunately, the interpretation of these features differs from the
critical points in flow fields: connectivity in DT-MRI can only be in-
ferred in a probabilistic sense. The major hyperstreamlines of a diffu-
sion tensor field can be interpreted as maximum likelihood pathways
[6], but type P features are merely locations in which no single di-
rection has maximum likelihood, not locations in which the pathway
“ends” as does a streamline at a sink.

Even if this means that degenerate lines have limited relevance for
the topology of neuronal fiber pathways, they may still constitute an
interesting tool for the analysis of DT-MRI data if they provide stable
features in practice. The following subsection explores this potential.



2.1 Experimental Setup

For our experiments, we have implemented the prediction-correction
scheme based on discriminant constraint functions and Hessian fac-
torization, as described in [30]. To obtain the best possible results
even under difficult conditions, we allow a large number of Newton-
Raphson iterations in the correction phase and repeat failed steps with
an extremely small stepsize.

Our dataset consists of diffusion-weighted images (DWIs) acquired
on a Siemens 3T Trio Scanner at b = 1000s/ mm? in 60 isotrop-
ically distributed gradient directions (3 averages each), plus one
non-diffusion weighted T, image (7 averages), voxel size 1.72mm
(isotropic). We received the images pre-registered to compensate mo-
tion and imaging artifacts. We estimated diffusion tensors via a simple
least-squares fit on the logarithm of signal intensities [2].

To avoid visual clutter, we limit our analysis to a region of interest
which spans 21 x 29 x 14 voxels at the center of the corpus callosum.
As suggested in [32], we only consider regions of sufficient anisotropy
(FA > 0.2). FA is the fractional anisotropy [4], defined for a diffusion
tensor D as
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The tractography in Figure 1 (a), obtained by major eigenvector inte-
gration and standard XYZ-RGB coloring, shows the corpus callosum
(in red) from a superior point of view, the cingulum bundles (in green)
and a small part of the pyramidal tract (in dark blue, at the right and
left image boundaries).

In our experiment, we examine the line features and their robustness
under noise. While type L features are not part of the major hyper-
streamline topology, Zheng et al. [32] have suggested that they may be
of particular interest for DT-MRI, so we include them in our analysis.

At low noise levels (with a signal-to-noise ratio SNR > 3), noise
in magnitude MR images can be approximated with a Gaussian distri-
bution [13], so we obtain noisy datasets by adding Gaussian noise to
the DWI and T, images and re-estimating the tensors. The standard
deviation is chosen as c = A/SNR with SNR € {12,8}, where A is the
average of signal intensities within the white matter mask.
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2.2 Practical Results

The degenerate lines in Figure 1 are colored using the same XYZ-
RGB scheme as the tractography to facilitate orientation. For type
P/L, the color indicates the minor / major eigenvector direction of the
tensor field. The degenerate lines themselves are not in general aligned
with any eigenvector direction, so the color coding does not indicate
the direction of the degenerate features. Rather, red type L features
are located within the corpus callosum, green ones in the cingulum
bundle, and blue ones are in the pyramidal tract.

Since our dataset has ten times the minimum number of DWIs re-
quired to estimate the tensors, the noise can be considered low and
moderate, which is reflected by the fact that the major features remain
discernible in the tractography at all noise levels. Still, the degenerate
features change significantly, especially those of type L. The results
may not rule out the possibility of selecting a set of type P features
which remain recognizable under noise. However, we used a smooth
(c? B-spline approximation of the tensor data [23], which stabilizes
feature extraction. Figure 2 illustrates the effect of using trilinear inter-
polation instead and exhibits significant differences, even when com-
pared to the results from exactly the same data in Figure 1.

In order to assert that the encountered instabilities neither indicate
a general flaw in the concept of tensor topology, nor an error in our
implementation, we finally present results on a randomly generated
dataset similar to the one used by Zheng et al. [30]. Figure 3 shows
both type L (cool colors) and type P features (warm colors). In this
case, changing the interpolation scheme alters the exact shape of the
features slightly, but generally leaves them well-recognizable.

2.3 Interpretation

From these experiments, we conclude that DT-MRI fields cannot be
regarded as generic second-order tensor fields in the sense that tensor
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Fig. 1. A comparison of type P and type L features under Gaussian
noise shows significant changes for even moderate noise levels.
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Fig. 2. Type P features with linear interpolation instead of B-spline ap-
proximation as in Figure 1. Feature lines depend significantly on the
choice of interpolation.
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Fig. 3. In a generic dataset, the degenerate lines are far less affected
by the choice of interpolation.



topology requires. This also explains the high number of short and
broken feature lines in Figures 1 and 2, which indicate that the loci of
degeneracy do not in general form stable lines in DT-MRI data. More-
over, the extracted features do not correlate with any known structures
in the data, which makes their interpretation difficult.

An explanation for this discouraging result may be found in an ap-
proach by Behrens et al. [6]. Instead of modeling the apparent diffu-
sivities (like in DT-MRI), they create a fiber model which predicts a
diffusivity profile from a set of fiber parameters and estimate a pos-
terior distribution of these parameters within a Bayesian framework.
In our context, the crucial aspect is that the predicted profiles from a
single-fiber model always correspond to a linear degeneracy. In other
words, we can expect regions where the model applies to be densely
filled with type L features whose exact location will depend on fac-
tors outside the model (like artifacts from noise and interpolation).
On the other hand, we cannot expect hyperstreamline topology to be
beneficial in regions where the single-fiber model breaks down, since
considering major hyperstreamlines implicitly assumes such a model.

3 RELATED WORK

In the previous section, we reviewed tensor topology and its potential
in the context of DT-MRI. Before we proceed, we will now discuss
works which are related to our alternative paradigm for topological
diffusion MRI visualization.

Our new method depicts fiber pathways as a whole. While Enders
et al. [11] have followed a similar goal by wrapping clustered stream-
lines, we use a completely different approach. Rather than clustering
streamlines from a deterministic fiber tracking method, we first parti-
tion grey matter voxels based on the results of a probabilistic method
and infer the pathways that connect them only in a second step. More-
over, our final visualization does not involve any streamlines.

Jonasson et al. [18] have segmented fiber tracts as a whole, but aim
more at the interactive segmentation of specific structures than at the
visualization of the dataset. Their approach relies on the placement of
an initial seed for a surface growing algorithm, which is driven by the
similarity of diffusion tensors in adjacent voxels and does not deter-
mine connectivity explicitly.

It their work on anisotropy creases, Kindlmann et al. [19] have
demonstrated that bounding surfaces between fiber bundles, which
could be considered a complement of the topological faces in our
method, can often be found from anisotropy alone without consider-
ing the connectivity that underlies the topological notions. However,
this analogy breaks down when fiber bundles are only distinguished
by their connectivity. For example, both our approach and streamline
clustering partition the corpus callosum into several sections (cf. Fig-
ures 6 and 7), while anisotropy creases do not reflect this subdivision.

Our paradigm for topological diffusion MRI visualization draws on
methods which have recently been introduced for connectivity-based
cortex parcellation studies in the neuroscience community [17, 1].
These works show that changes in connectivity profiles allow the par-
titioning of grey matter into functionally distinct regions; our focus is
to construct a novel visualization method based on this insight. More-
over, existing approaches do not consider the asymptotic behavior of
the employed tractography methods, so they do not constitute a topo-
logical analysis.

Finally, as a result of using probabilistic tractography, the topologi-
cal features we suggest are fuzzy, which reflects the uncertainty inher-
ent in the inferred connectivity. In flow visualization, uncertainty has
not yet played a major role. Salzbrunn and Scheuermann [24] have
recently introduced “fuzzy” streamline predicates as a means to define
characteristic sets of predicates for which it is algorithmically difficult
to calculate them directly. However, they do not use them to visualize
uncertainty. To the best of our knowledge, a fuzzy topology which
conveys the confidence level of region boundaries to the user, has not
yet been considered.

4 ToPOLOGICAL FEATURES IN DIFFUSION MRI DATA

Previous research on tensor topology has started from mathematical
analogies [10], which is appropriate to define stable features in generic

tensor data. In this work, we are concerned with finding features that
have a meaningful interpretation in the context of our particular type
of data, so we choose brain anatomy as the starting point of our rea-
soning. Axons, which form the white matter pathways whose connec-
tivity we would like to investigate, have an orientation: they start at
a cell soma and end in a synapse. However, diffusion imaging does
not reveal this polarity, so we cannot distinguish if a connection end-
point is a source or a sink; note that tensor topology does not make
this distinction either.

Critical points in flow topology are an instance of the more general
notion of limit sets: They are locations in which a streamline integra-
tion starts or ends. In general, such limit sets do not necessarily form
points. For example, the degenerate locations in 3D tensor topology
form lines. Within the scope of diffusion images of the brain, neuronal
pathways end at surfaces, namely, at the interfaces between grey and
white matter or between white matter and the boundary of the domain.
Recently, so-called cortex parcellation studies have shown that to a
certain extent, functionally distinct regions within grey matter can be
found by considering changes in their connectivity profile [17, 1]. We
will call connected regions of uniform connectivity, which are likely to
represent anatomically meaningful units, critical regions, and identify
them as the suitable limit sets for our diffusion MRI topology.

As discussed in Section 2, the endpoints of streamlines that result
from deterministic fiber tracking methods [3] do not necessarily co-
incide with endpoints of the underlying neuronal pathways, so we do
not consider them appropriate for defining a diffusion MRI topology.
Instead, we base our analysis on the asymptotic behavior of a proba-
bilistic fiber tracking approach [20] that employs the widely used dif-
fusion tensor model and will be summarized in Section 5.1. Alterna-
tive methods, which may or may not depend on diffusion tensors (e.g.,
[6]), could be plugged into our framework, making its use independent
of the preferred choice of diffusion and fiber models.

4.1 Critical Regions and Basins

The fact that the selected fiber tracking method provides a probabilis-
tic connectivity measure has to be reflected in the definition of topo-
logical features from its results. In topological flow visualization, the
a-basin of a source is the union of all streamlines that emerge from it.
Accordingly, the @-basin of a sink is the union of streamlines that end
in it [25]. Analogous to these notions, we define the p-basin of a criti-
cal region as the set of points from which a probabilistic tractography
reaches that region with probability P > p. For a point that connects
two regions, we expect that around half of the particles end in each
region, so we typically consider p-basins with p < 0.5.

To clarify these basic notions visually, we present some examples
obtained with the method from Section 5, on the same region of inter-
est as in Figure 1. Since it is taken from the center of the brain, the
critical regions segment the domain boundaries rather than the cortex.
Figure 4 (a) shows the deterministic tractography from a posterior/left
viewpoint and a sample critical region as a yellow surface. It corre-
sponds to the left endpoints of the fibers that pass through the central
part of the corpus callosum and extends to a portion of the internal
capsule. This is understandable, since fibers from both structures in-
termingle in this region and are not cleanly separated anatomically.

Figure 4 (b) presents the same critical region with its 0.4-basin in-
stead of the tractography. To provide a confidence interval, the 0.25-
basin is rendered transparently. As expected, the basin extends over
the central part of the corpus callosum and down towards the inter-
nal capsule. For the XYZ-RGB color coding of basins and faces, a
weighted average is computed from the tensors within the correspond-
ing structure, with the local probabilities as weights. Thus, the purple
color of the basin indicates the mixture of fibers that run through the
corpus callosum (red) and the internal capsule (blue).

4.2 Faces

In flow visualization, one is typically interested in the faces which re-
sult from all intersections of ¢- and @-basins. These are regions of
uniform asymptotic flow behavior, i.e., regions in which all stream-
lines emerge from the same source and end in the same sink. Taken



(a) A critical region, indicated by
the yellow surface

(b) The corresponding 0.4- and
0.25-basins (purple/transparent)

(c) The counterpart of (b) on the
right side

(b) The 0.4- and 0.25-faces that
connect both regions

Fig. 4. The basin of a critical region consists of the voxels from which
a probabilistic tractography reaches the region. A face of two regions
consists of the voxels that connect them.

together, they form the topological skeleton of a flow field. In diffu-
sion MRI topology, the corresponding notion is the p-face of a pair
of critical regions, consisting of the set of points which connect both
regions with probability P > p. The derivation of this probability is
left to Section 5.5. To illustrate the notion beforehand, Figure 4 (c)
presents the counterpart of the basin in (b) on the right side of the cor-
pus callosum. Figure 4 (d) shows the common 0.4- and 0.25-faces
of the two critical regions, which clearly depict the part of the corpus
callosum that connects both sides.

5 EXTRACTION OF TOPOLOGICAL FEATURES

Figure 5 gives an overview of the processing pipeline that will be de-
scribed in this section. It comprises a preprocessing step in which
the fiber tracking is performed (Section 5.1), a clustering step which
forms the critical regions (Sections 5.2 and 5.3), as well as algorithms
for the extraction and ranking of faces for examination by the user
(Sections 5.4 and 5.5). We expect that a topological visualization of
diffusion MRI data will be of specific interest to researchers in neu-
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Fig. 5. An overview of the processing pipeline. The user can interact
with it in a number of ways to test specific hypotheses.
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roscience, so the proposed method aims to provide a sensible initial
visualization, then allows the user interaction for formation and test-
ing of specific hypotheses.

5.1 Preprocessing

As a first step in finding our topological features, we perform a prob-
abilistic fiber tracking, using a 3D variant of the algorithm proposed
by Koch et al. [20]. First, it classifies voxels as white matter, grey
matter, and cerebrospinal fluid (CSF). The volume outside the brain is
masked previously during tensor estimation, based on low signal val-
ues. Voxels with a tensor trace tr(D)/3 > 10~°m? /s are marked as
cerebrospinal fluid and grey matter is distinguished from white matter
based on an anisotropy threshold (white matter: FA > 0.2). Isolated
white or grey matter voxels are caused by fluctuations around the FA
threshold, and removed in a post-processing step. Consequently, we
call non-white matter voxels adjacent to white matter interface voxels
and we add dummy voxels around the region of interest when white
matter reaches the boundary of the domain.

The tractography itself is based on a random walk of particles at
voxel resolution. Let r,, be the unit vector pointing from voxel m to
a voxel n in its 26-neighborhood .4 and d, (¥ ) = rL, Dy, be the
apparent diffusivity in that direction, derived from the diffusion tensor
D,,,. Then, Koch et al. define the transition probability p(m — n) from
voxel m to n as

) = [dm(rmn) +dn(rmn)}a
p(m ) Yowen [dm(rmn’) +dy (rmn’)}a

where the exponent a is empirically fixed at @ = 7. Taking the exponent
focuses the diffusivity profile to its major direction, which is likely to
align with an actual fiber direction, while allowing for a certain sur-
rounding spread. Some authors have used the product of diffusivities
instead of the sum to adapt this method. In this modified form, Equa-
tion (2) has produced plausible cortex parcellations [1] and results that
agreed with findings from fMRI [12].

After the first step, Koch et al. restrict the probability distribution to
directions that deviate less than 90° from the previous step. We make
two small improvements to this: First, we additionally set the tran-
sition probabilities to CSF voxels to zero, because it is anatomically
impossible that fiber tracts end in the CSF-filled ventricles. Second,
we do not simply truncate the distribution at 90°, but rather weight
the probabilities in forward direction with cos ¢, where ¢ is the angle
between r,,, and the current tracking direction t, calculated from the
direction r/,,,, of the previous step as t = D,,r},,,,. This definition of t ac-
counts for the fact that the fiber direction changes from voxel to voxel
and is analog to the “outgoing” direction in the tensorline propagation
by Weinstein et al. [29]. Section 6.2 presents an example where these
modifications are necessary to obtain correct results.

The random walk is terminated when the particle reaches an inter-
face voxel. For each white matter voxel, we trace 10 000 particles and
record the percentage that goes to the individual interface voxels. Sim-
ilar to previous methods that pre-compute a deterministic tractography
[7], this step is performed offline. For the region of interest in Figure 6
(4 948 white matter voxels), it takes more than six minutes on a 2 GHz
Athlon 64 processor. The computations required by our modifications
to the original algorithm account for 25% of the total time.

(@)

5.2 Clustering Criteria for Critical Regions

Cortex parcellation studies have computed and clustered a correlation
matrix for the interface voxels in the region of interest, either manually
[17] or with k-means [1]. However, forming critical regions within a
topological visualization method requires that the number of clusters is
chosen automatically, based on the data. Moreover, we cannot ensure
connectivity of the critical regions when considering only the correla-
tion matrix, since it does not contain any information about voxel ad-
jacency. Consequently, a novel approach is required for the clustering
of critical regions. This subsection introduces some notation and for-
malizes suitable clustering criteria. A custom algorithm which fulfills
these requirements will then be presented in the following subsection.



Let # be the set of white matter voxels w, W = |#/|. Similarly, .%
is the set of interface voxels i, I = |.#|. Then, the tractography result
for voxel w can be written as a vector t(w) of dimension I, where #;(w)
is the percentage of particles originating from w that reached i. From
this, we define the footprint f(i) of an interface voxel as a vector of
dimension W:

Sw(d) =FA(Dy) -1;(w) 3)

Weighting particles with the fractional anisotropy at the originating
voxel w has not been done by previous authors and is not strictly nec-
essary to get sensible results. However, it helps to stabilize the clus-
tering in the presence of noise (cf. Section 6.1), where the principal
direction in regions of low FA may be unreliable.

A clustering I" of the interface voxels is a partition of .# into C
clusters I'1,...,I'c, where we require that each I'; is connected. The
number of clusters C is not known a priori and changes as part of the
clustering process. For each cluster c, the footprint F(c) is defined as
the accumulated footprint of its members:

F(c)=Y (i) @)

iel’.

The similarity y,(i) between a cluster ¢ and an interface voxel i is
defined as (i) F(0)
f(i)-F(c

Vel = T e
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Since none of the involved vectors have any negative components, the
range of Y, (i) is [0, 1]. From this, the homogeneity . of a cluster c is

defined as . )
g Zier [If0)ve (i)
c — .
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Since the total number of particles that arrive at an interface voxel can
vary significantly with the number of white matter voxels in its neigh-
borhood, it is appropriate to normalize Y, by the product of footprint
magnitudes in Equation (5). In contrast, the weighting in Equation (6)
reflects the fact that interface voxels with only a small number of par-
ticles should contribute less to the overall homogeneity of a cluster.

Let ¥ be a function that maps each interface voxel i to its cluster ¢
(i.e., (i) = cif i € I';). Then, a clustering is appropriate with respect
to the data if the total homogeneity ¥ is high:

_ Lies [IE@) 1wy (0)
Lies [IEG)]|

If we leave the problem unconstrained, W reaches its optimum at
the trivial clustering, in which each interface voxel has its own cluster
(C=1). Thus, we are interested in a clustering that is optimal under the
additional condition that the homogeneity of each individual cluster ¢
should approximately equal a parameter i (W =~ h).

In our experiments, values around 4 ~ 0.2 generally gave useful re-
sults. However, part of the insight in [1] has been gained by trying
various values of k for the k-means clustering, so leaving % as a user-
defined parameter is useful for allowing an interactive exploration of
the data. Also, the authors of [1] try to discover whether the data sup-
ports further subdivision of specific clusters, so we allow interactive
splitting and merging of user-selected clusters. A subsequent global
optimization of ¥ indicates if a split resulted in valid sub-clusters: In
that case, surrounding clusters should not change significantly.

(%)

(6)
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5.3 Clustering Algorithm

To find a clustering according to the criteria of the previous section,
our method proceeds in two steps: The first step follows a greedy lo-
cal strategy to create an initial clustering I". The second step globally
optimizes both the clustering and the number C of clusters with respect
to W, preserving the conditions of connectivity and cluster homogene-
ity W, ~ h. Similar two-step methods have previously been used in
computer vision to reduce the complexity of segmenting images into
an unknown number of regions (e.g., [8]).

A common building block of both steps is a variant of the k-means
algorithm that uses a fast-marching region-growing scheme to ensure
connectivity of the resulting clusters. Like k-means, it iteratively com-
putes new cluster footprints F*! from a given clustering I"* and sub-
sequently uses them to re-assign all interface voxels to new clusters
[+, Convergence is assumed when only a small percentage (e.g.,
2%) of the voxels is re-assigned to a different cluster.

The footprints F"+! are determined by evaluating Equation (4).
Consequently, for each cluster c, the voxel i € I'! with the highest sim-
ilarity w/*1(i) is selected as a seed point. Starting from these seeds,
voxels which have not yet been assigned to I are added to an adja-
cent cluster c. In order to optimize W, voxels are added in descending
order of their similarity u/g’“ (7). Thus, good-matching voxels are as-
signed early on, while dissimilar voxels are initially left free, which
gives more suitable clusters the chance to become adjacent to them.
This scheme is efficiently implemented using a priority queue.

The initial clustering ignores interface voxels i with ||f(i)|| < 0.2.
Because of their low weight in Equations (6) and (7), their influence
on the final result is small. However, many of the final clusters are sep-
arated by regions of small footprint magnitude, so a connected com-
ponent analysis of the interface voxels that fulfill this condition is an
extremely simple and cheap way to identify some of the relevant clus-
ters. The final global optimization, however, takes into account all
voxels with ||f(i)|| > 0. Experiments have indicated that using this
heuristic does not affect the final result significantly, but nearly dou-
bles the speed of the clustering process.

To make the algorithm more stable, we replace the parameter & with
two parameters, i and ™, where i is slightly larger than 4. If the
average similarity W, of a cluster is smaller than 4™, the cluster is split,
to allow a more precise adaptation to the data. On the other hand, if
merging two adjacent clusters would lead to a cluster homogeneity
which is still larger than 4™, the merge is performed.

Initially, each connected component is treated as a cluster and sub-
divided until 2~ is reached. At this stage, the region-growing only
acts locally on the voxels of the two newly formed sub-clusters. When
a cluster is split, one half of its members are assigned arbitrarily to
each of the two new clusters. After the first iteration of the region-
growing algorithm, the results are again connected and converge to
an optimum. In rare cases, this “careless” initialization causes very
small sub-clusters to split off. However, this is acceptable, since such
clusters will be re-merged later.

When the initial clusters have been found, the region-growing is
used to extend them to all interface voxels and to refine them until
global convergence. After merging and splitting clusters as appropri-
ate, this procedure is iterated until no more merges or splits are neces-
sary. Since the initial clustering is usually quite good, convergence is
quickly reached.

In our implementation, we exploit the fact that most interface voxels
only connect to a small fraction of the white matter, i.e., the footprint
vectors f are sparse. Thus, we store them as lists of <voxel index,
value> pairs rather than as full-length arrays, which significantly re-
duces the cost of evaluating Equations (4) and (5). On the region of
interest shown in Section 4 (I = 3408, W = 4948), the full clustering
took 1.3's on a 2 GHz Athlon 64 processor. Afterwards, small modifi-
cations to &, or user-specified splits and merges, followed by a global
optimization, take around half a second, making these operations ap-
propriate for interactive exploration of the data.

5.4 Definition of Faces

According to the definition in Section 4.2, we must determine the
probability that a given voxel connects any two critical regions to find
the faces in diffusion MRI topology. This information can be collected
in the tractography step by using particle pairs that leave the starting
voxel in opposite directions. Pairs of interface voxels that are reached
this way are connected through the starting voxel.

Even though the target space of such pairs is of order /2, only a few
pairs are actually connected, so for small enough regions of interest,
a sparse representation makes this approach feasible. For example, in
the region discussed above, probabilistic tractography from a single



(a) Exact faces from tracking
particle pairs

(b) Faces from a simple heuristic

Fig. 6. A visual comparison suggests that our simple heuristic provides
a suitable approximation of the exact faces.

white matter voxel reaches 285 individual interface voxels on average,
but only 1135 voxel pairs. Still, this exact solution may become pro-
hibitively expensive on larger regions of interest. Already in the case
of Figure 9, the probabilities of more than 4 - 107 voxel pairs have to be
stored. Thus, we additionally present a simple heuristic that estimates
the face probabilities from the cluster footprints F alone. Its funda-
mental idea is to divide the particles reaching a given region according
to the ratio of particles that went to the remaining regions and to let
them vote for a connection to these regions.

Let T, (w) be the percentage of particles from a white-matter voxel
w that reach cluster c¢. If a single region collects more than 50% of
the particles (7, (w) > 0.5), we assume that the voxel w connects that
region to itself with probability P..(w) = 2-T.(w) — 1. To compute the
connectivity between different regions, we remove these probabilities
from T.: Let T)(w) = To.(w) — Pec(w) be the reduced percentages for
which T!(w) < 0.5 and let P(w) = Y. P..(w) be the probability that w
connects any critical region to itself. Then, the estimated probability
P, (w) that w connects clusters a and b, a # b, is given by

Ty(w)
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T 00 TR ©
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Equation (8) is an ad hoc definition, designed to satisfy the require-
ments that the resulting probabilities are non-negative and form a par-
tition of unity. Its symmetry P, (w) = Py, (w) reflects the fact that we
cannot distinguish between sources and sinks.

Figure 6 provides a comparison of faces obtained from tracking
particle pairs (in (a)) and faces computed with our heuristic (in (b)).
Visually, the approximation appears adequate. To allow an objective
comparison, we averaged the absolute difference between exact and
approximated P,;,(w) over # for the nine displayed faces. The abso-
lute deviation ranged between 0.0007 and 0.0095, with an overall av-
erage of 0.0057. Over the voxels relevant for display (P,;(w) > 0.33,
corresponding to the confidence bounds in Figure 6), the average rel-
ative deviation of the heuristic from the exact method was between
0.5% and 10%, the overall average being 5%.

5.5 Selection of Relevant Faces

Similar to 3D flow topology, diffusion MRI topology is sensitive to
the fact that three-dimensional faces may occlude each other, leading
to visual clutter that is difficult to interpret. To alleviate this problem,
we define a metric of face relevance, helping the user to select only the
important faces for display.

A face is relevant if the voxels it contains belong to it with a high
probability. Thus, a suitable formalization of the relevance p,;, of a
face between clusters a and b is its summed probability P,;, over 7/,
normalized by the magnitude of the joint footprint:

~ Ywew Pa(w)
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(a) Clustered streamlines in the
same data as Figure 6

(b) Faces in less-ideal data of the
same subject

Fig. 7. A comparison with clustered streamlines and the faces in a nois-
ier dataset validate the results and the reliability of our method.

Equation (9) is evaluated for all possible pairs of clusters and the re-
sulting faces are ordered according to their value of p. The user can
then add faces until she feels that cluttering occurs or less important
faces start to appear. In Figure 6, the nine most relevant p-faces have
been selected this way and rendered with p = 0.66 (confidence bounds
at p = 0.33). Computing and ordering the faces took 0.27s for exact
faces, and around 10 ms with the heuristic.

Figure 7 (a) gives a visual comparison of our results to a determin-
istic tractography, pseudo-colored according to a clustering with the
method by Brun et al. [9], which is based on normalized cuts and was
also used by Enders et al. [11]. Both clusterings agree on the main
features: The corpus callosum (CC) is subdivided into multiple re-
gions and separated from the cingulum bundles (Cing). Only a few
streamlines were seeded inside the internal capsule (IC, truncated by
the region of interest), making it more recognizable in Figure 6.

Note that in Figure 7 (a), some streamlines of the corpus callosum
are clustered as part of the cingulum bundle and vice versa. This is
due to the fact that Brun et al. project the fibers to a low-dimensional
feature space in which these streamlines are not well-separated. In
contrast, our clustering works directly on the high-dimensional voxel
footprints. Also, clustering the 2290 displayed streamlines using an
unmodified NCut algorithm took 90s, which made fine-tuning of the
parameters more time intensive than with our method.

6 EXPERIMENTAL RESULTS
6.1 Robustness under Noise

We tested the robustness of our features under both real and synthetic
measurement noise. Figure 7 (b) presents results on a second dataset
from the same subject as in Figure 6. It also uses the setup described
in Section 2.1, but includes only one, rather than three, measurements
per direction. This reduces the measurement time for a full-brain scan
to 15 minutes, at the cost of stronger physical noise.

For direct comparison with the results in Section 2.2, Figure 8 addi-
tionally shows faces in the datasets which were corrupted with additive
Gaussian noise. Since the noise causes higher variability in the voxel
footprints, we have selected a lower homogeneity target 4 than in Fig-
ure 6 to obtain a comparable number of critical regions (h = 0.24 with-
out noise, h = 0.22 with artificial noise, # = 0.21 with physical noise).
In all examples, we show the 0.66- and 0.33-faces with a relevance
value p > 5.

The results suggest that even though the exact clustering changes,
most notably in the slightly different subdivision of the corpus callo-
sum, all major structures remain well recognizable at all noise levels.
Timings were around 2s in all cases.

6.2 Results on a Larger Region of Interest

For additional validation, Figure 9 presents results on a second, larger
region of interest, which spans 49 x 39 x 25 voxels in the center of



(a) SNR=12 (b) SNR=8

Fig. 8. The major faces (p > 5) remain recognizable when adding syn-
thetic noise.

Fig. 9. The most important structures are found also in this larger region.
However, the probabilistic tractography makes it difficult to trace thin
fibers over long distances.

the brain, right below the corpus callosum. It is shown from a poste-
rior/superior point of view, with additional data context provided by
FA slices. As can be seen in the streamline tractography in Figure 10,
this region contains more white matter than could be shown occlusion-
free in a single rendering. Thus, we sorted the 1176 possible faces us-
ing the p-criterion and manually selected twelve out of the 23 highest-
ranking faces for display. They depict the inferior fronto-occipital fas-
ciculus (IF), the internal capsule (1C), the anterior thalamic radiation
(ATR) and parts of the corpus callosum (CC, truncated by region of
interest), which also can be partly recognized in the streamline clus-
tering in Figure 10 (b).

In this experiment, it becomes apparent that the probabilistic trac-
tography method used for pre-processing is not well-suited for tracing
thin fibers over long distances. At some point, most random paths
end in the walls of such structures rather than traversing them fully.
The notable deviation between the core (p = 0.4) and the confidence
bounds (p = 0.2) of IF and ATR in the rendering reflects the high
amount of uncertainty that results from this.

Even though the modifications suggested in Section 5.1 improve on
this problem to some degree (with the original formulation by Koch

(b) Standard tractography,
pseudo-colored by cluster

(a) Standard tractography in
XYZ-RGB coloring

Fig. 10. Results from a deterministic tractography and a streamline clus-
tering for comparison.

et al. [20], we were not able to reproduce the IF and ATR at all), we
consider this a major obstacle in analyzing larger regions of interest
using our method. We find it likely that a reliable estimate of long-
range connectivity will require the introduction of prior knowledge
into the tracking process. However, such an undertaking is outside the
scope of this paper.

Finally, the following table summarizes the timings from our exper-
iments, which indicate that our clustering method remains feasible for
larger regions of interest.

1 w time time/l | WM/I
Figure 6 3408 4948 1.3s 0.4 ms 413
12 of Figure 9 | 7803 12765 | 10.8s || 1.4ms 771
Figure 9 14633 | 24787 | 22.2s || 1.5ms 852

For comparison, we have included a region of interest that covers only
the left half of Figure 9. When doubling the input size from the sec-
ond to the third row, the time spent per interface voxel remains almost
constant. However, the clustering for Figure 6 is much cheaper. This
is partially explained by the sparse representation of voxel footprints,
which exploits the fact that the number of white matter voxels con-
nected to an average interface voxels (WM/I) is significantly lower.

7 CONCLUSION AND FUTURE RESEARCH

The motivation for this work was a lack of methods for connectivity-
aware feature extraction from diffusion MRI data that would resem-
ble the expressiveness of topological methods for flow visualization.
We have closed this gap by defining suitable, anatomically meaning-
ful topological features in brain diffusion MRI and proposing a method
for their extraction.

At the same time, we have contributed a method for visual analysis
of results from probabilistic tractography. In the past, visualization
research focused on deterministic streamline techniques. However,
researchers interested in quantitative connectivity studies have deemed
confidence intervals provided by probabilistic methods indispensible
for their work and are lacking appropriate methods for visualizing their
results. In recent papers, slice projections [5] or volume renderings [1]
of scalar connectivity values derived from the tractography constitute
the state of the art.

While our work solves some open issues, it also leaves a number
of questions to future research. To reduce the complexity of our ap-
proach, we have neglected the uncertainty in the critical regions them-
selves. It could be worthwhile to investigate if a probabilistic cluster-
ing further improves visualization. Also, more work could be done on
the rendering of features. Currently, we only assign uniform colors
to the basins and faces. Textures could add information relevant for
interpreting the probabilistic tractography, like local fiber orientations
and their variance, or the local density of particles.

Out of the need to reflect the uncertainty inherent in our data, we
have defined probabilistic versions of some basic topological features,



leading to expressive visualizations. While it is outside the scope of
the present work, it would be interesting to derive a rigorous mathe-
matical framework for fuzzy topological visualization that may rest on
existing fuzzy set theory (e.g., cf. [16]), and to apply it to other cases
in which uncertainty visualization may play a role.

Finally, our approach integrates two topics of active research in the
neuroscience community, namely, finding probabilistic fiber tracking
methods that reliably reproduce fiber tracts known from anatomy (e.g.,
cf. [5]), and clustering grey matter voxels in a way that reflects func-
tional units (e.g., cf. [1]). Our work has both benefited from this re-
search and leads to a method that could help neuroscientists to better
explore their data. It is our hope that having these tasks as part of our
visualization pipeline will continue to create synergies between the
two exciting fields of visualization and neuroscience.
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