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Abstract

We discuss the problems to be solved to develop a web-based vector field visu-
alization system. Furthermore we present the system CurVis as one solution of these
problems. As part of the CurVus system, two new global visualization techniques for
vector fields are introduced: curvature plots and IDraw. Their combined application as
hybrid technique is discussed as well. Finally applications and examples of the new
techniques in the CurVis system are shown.

1 Introduction

With the availability of the World Wide Web, many applications which formerly required
specialized software and powerful hardware can now be realized by placing that specialized
software on a powerful server and allow access from cheap client computers using standard
web browsers. Flow visualization techniques are a candidate for this approach, since they
require powerful computers as well as specialized software.
The visualization of data is usually realized as a pipeline of processes, the visualization
pipeline. If a visualization program is to be distributed between a client and a server, a
decision has to be made where the visualization pipeline should be partitioned. Compared
to standalone visualization systems, the client computers which access the visualization
on the server have a variety of display capabilities, and data will have to be transmitted
over networks of varying, often low bandwidth. To provide for each client the maximum
possible quality of service, a WWW-based visualization service must be able to adapt to
context parameters such as display size and bandwidth. Usually, the visualization session
starts with an image showing the whole dataset. Later, the user often wants to explore
interesting parts of the data set in greater detail. A detail on demand feature should allow to
request greater detail in regions where it is needed. The user of a web-based visualization
service should be able to submit his/her own data sets over the Internet.
Especially if the system is accessed using notebook computers with small screens, it is
essential that the screen real estate is used efficiently by the visualization. Compared to
local methods (e.g., streamlines or arrow plots), which provide information about the vector
field only in some pixels of the resulting image, global methods (like LIC) are required
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which provide information about the underlying data in every pixel of the display. Thus it
was part of the research presented in this paper to develop new global flow visualization
techniques which are applicable - but not restricted - to visualization in the context of the
Internet.
This paper is organized in the following way: chapter 2 discusses the problems to be solved
to realize a web-based vector field visualization system and introduces the system CurVis
(CFD universal remote Visualizer) as a solution to the problems stated. Chapters 3 - 5 intro-
duce new visualization techniques for vector fields which are appropriate for visualization
in the internet context: curvature plots, IDraw and hybrid techniques.

2 CurVis - a System for Vector Field Visualization on the
Internet

2.1 Pipeline Partitioning and Peephole Optimization

The visualization pipeline is a sequence of several processes converting data into an image.
Brodlie[1] distinguishes between filtering of the data, mapping of the data to geometry
and rendering of the geometry into a raster image. He classifies web-based visualization
systems using the criterion between which processes the pipeline is partitioned.
Under the assumption that the visualization is accessed using web browsers, two solutions
are possible. Most web browsers support some common raster image formats (GIF, JPEG)
and the execution of Java applets. That’s why the first solution is to compute an image on
the server and to transmit it to the client, which corresponds to partitioning the pipeline be-
tween rendering and presentation. The second opportunity is to transmit the data set and a
Java applet which computes the visualization locally, which corresponds to partitioning the
pipeline between filtering and mapping. A third opportunity, partitioning between mapping
and rendering, is not suitable for visualizing 2D flows. We investigated the first two op-
portunities using the Integrate and Draw method. As server, an SGI Power Challenge with
1GB main memory and six 196 MHz R 10000 processors has been used, the client was an
125 MHz Intel Pentium based PC with 32 MB main memory, connected to the server over
a simulated slow Internet link with a net bandwidth of 9600 Bits/s. We broke the pipeline
before the filtering step (using a Java applet and a binary which run locally on the client; the
original data set has been compressed using gzip and fetched from the server) and between
rendering and presentation (which is implemented by the CurVis system described below).
Figure 1 shows the total times for these three partitioning alternatives for a wide range of
data sets (bodden, water, cylinder, hyper and dipol). It is obvious that the partitioning de-
cision between rendering and presentation is superior in all cases. For small data sets, the
alternative to use a local binary is nearly as good, but offers less flexibility since this binary
would have to be provided for each client platform.
That’s why we decided to partition the pipeline between rendering and presentation.
In order to save transmission bandwidth, the peephole optimizer of the chosen partitioning
must use image compression methods, since the transmitted data are image data. How-
ever, the images produced by the different visualization techniques require different com-



Figure 1: Partitioning alternatives for the Integrate and Draw method

pression methods. One could think that the lossy compression algorithm JPEG is always
superior over lossless algorithms but that is not the case. As JPEG has been developed
for continuous-tone true color images, it delivers best compression on this image class.
On images with only a few colors, lossless compressors like GIF are often superior over
JPEG. Since the different techniques generate images with very different characteristics,
we are able to select the compression method best suited using our knowledge over these
characteristics. Arrow plots and streamline images have only a few colors and large areas
shaded in the background color, making them candidates for GIF. Curvature plots, IDraw
and hybrid images, which show smooth gradients of color, can be better compressed using
JPEG. Preferably, the progressive JPEG mode is used. Figure 2 provides a comparison.
Using JPEG, a streamlines image can be compressed to the size of its GIF equivalent only
by applying strong quantization which makes it impossible to interpret the visualization.

Figure 2: Suitability of GIF and JPEG for the compression of different flow visualizations

2.2 Context-based Image Generation

Context-based image generation can stretch the limits imposed by low bandwidth, restricted
client display resources and processing power. It can save resources by generating images
on the fly at a resolution and with a number of colors which can be displayed at client side.
Compression of the generated image using the right compression method further decreases



the bandwidth demands. A method which supports progressive refinement of the image
(e.g., progressive JPEG) or even only of selected regions of interest[6] allows the user
to early assess the value of the visualization for his/her goals and to cancel unnecessary
data transmissions. The adaptive image generation process is controlled by a set of context
parameters:

� Display context: describes the client display size and possible number of colors

� Technique: selects the visualization technique

� Zooming: describes the mapping from the grid underlying the data to the grid under-
lying the pixel image to be generated

� Network: describes the available bandwidth

Depending on these context parameters, a visualization technique can be selected and pa-
rameterized by the system such that the image fits the client display capabilities.

2.3 System Overview

The system CurVis provides several visualization techniques: the classic streamlines, a sim-
ple arrow plot, the curvature plot technique presented in section 3, the integrate and draw
method discussed in section 4 and hybrid methods proposed in section 5. Furthermore, the
critical points of the vector field can be analyzed using the approach presented by Helman
and Hesselink[3] and transmitted as a textual description. Each visualization module cre-
ates a bitmap image. More visualization modules can easily be added, as each module runs
as a CGI program on the server. This allows the easy integration of arbitrary executables
as long as they obey some simple interface specifications. When the image is generated,
the context parameters discussed above are considered. An already generated image can be
zoomed in by altering the zooming factor in the context parameter set. In this case, a new
image is generated using the new context. Remote users can upload their data files for visu-
alization to the CurVis server. CurVis automatically selects the image compression method
best suited to the visualization generated. Figure 3 shows a block diagram of CurVis.

3 The Curvature Plot Visualization Technique

The curvature plot is a new global visualization technique for 2D flow fields. First intro-
duced in [8], it gives a smooth image of the flow. The compression of these images gives
usually gives good compression ratios; a reduced display a a notebook computer is in most
cases sufficiant for displaying the visualization. This makes curvature plots an interesting
candidate for the use in an Internet environment.
A 2D steady flow is usually described as a 2D vector field V �x� y� � �u�x� y�� v�x� y��T .
A curve s � IR is called a tangent curve (stream line) of V if the following condition is
satisfied: For all points �x� y� � s , the tangent vector of the curve in the point �x� y� has
the same direction as the vector V �x� y�.



Figure 3: Block diagram of CurVis

For every point �x� y� � IR there is one and only one tangent curve through it (except for
critical points of V , i.e. points with kV k � �). Tangent curves do not intersect each other
(except for critical points of V ). They do not depend on the magnitudes but only on the
directions of the vectors in the vector field.
Given a (non-critical) point �x�� y�� in V , let s be the tangent curve through �x�� y��. Fur-
thermore, let s be parametrized in such a way that

s�t�� � �x�� y�� (1)

�s�t�� � V �s�x�� y���� (2)

( �s�t� denotes the tangent vector of s�t�). Then we can compute the second derivative vector
�s of s at t� by applying the chain rule to (2):

�s�t�� � �u � Vx � v � Vy��x�� y��� (3)

Now we can easily compute the signed curvature of s in �x�� y��:

��t�� �
det ��s�t����s�t���

k �s�t��k�
� (4)

(2), (3) and (4) have the following consequence: in order to compute the curvature of a
tangent curve in a certain point of a vector field it is not necessary to know the tangent
curve itself. It is sufficient to know the vector field V and its partial derivatives.
Inserting (2) and (3) into (4), we obtain a simple formula for the curvature of tangent curves
through every point of the vector field:

��V � �
u � det�V� Vx� � v � det�V� Vy�

kV k�
� (5)

(5) describes a scalar field in the domain of the vector field V . This scalar field describes
the curvature of the tangent curve in every point of the domain. We call this scalar field



��V � the curvature of the vector field V . ��V � is only defined for non-critical points. It
does not depend on the magnitudes of the vectors in V .
The perpendicular vector field V � of a 2D vector field V � �u� v�T is defined as V � 	�
��v� u�T . For every point of the vector field, the vectors of V and V � are perpendicular to
each other. We obtain for the curvature of V �:

��V �� �
u � det�V� Vy�� v � det�V� Vx�

kV k�
� (6)

We want to visualize the curvature � of a 2D vector field in the following way: compute �

for every point of the domain and color code these values. To do this we use a continuous
color coding map with the following properties: a negative value is mapped to a green color,
a positive value is mapped to a red color. The higher the magnitude of the value the lighter
the color gets. A zero value gives black; if the value diverges to plus (minus) infinity the
red (green) color tends to white.

a) b)

c) d)

e) f)

g) h)

i) j)

k) l)

Figure 4: Linear vector field with saddle point (a..d); linear vector field with repelling focus
(e..h); linear vector field with center (i..l)

The pictures a-d of figure 4 give an example of the vector field V �x� y� �

�


�

�
x ��

�



�
y. This linear vector field has a critical point at ��� �� - a saddle point. Figure 4a

shows a numerical tangent curve integration. Figure 4b is the visualization of its curvature.
Figures 4d and 4c show the same for the perpendicular vector field V �. In this case, V �

has a saddle point at ��� �� as well. Note that generally the topology of a vector field and
its perpendicular vector field might differ.
The reason for visualizing the curvature of both V and V � is shown by considering the
following visualization properties:
In the curvature visualization b) of figure 4 the critical point appears as highlight. Consid-
ering (5), ��V � tends to infinity only if the denominator of � tends to �. This occurs only
at critical points. Therefore, a highlight in the curvature visualization always indicates a
critical point in the vector field. The reverse question arises: does every critical point pro-
duce a highlight in the curvature visualizations? The answer is yes, if we exclude certain
degenerate points. A degenerate critical point of a vector field V is a critical point where



the directions of the vectors of V do not change in the neighborhood of the critical point.
For non-degenerate critical points, we have the following

Theorem 1 In the neighborhood of a non-degenerate critical point of a 2D vector field V ,
the curvature of V or V � (or both curvatures) tend to infinity.

An exact definition of a degenerate critical point and the proof of this theorem can be found
in [8]. The same theorem can be formulated in the following way: non-degenerate critical
points in a vector field V always produce highlights in the visualization of the curvature of
V or V �.
Considering the curvature visualizations b) and c) of figure 4 again, another question arises:
Do the curvature visualizations of V and V � contain all information of V ? The answer is
given by

Theorem 2 Given are two 2D vector fields V� and V� which have non-constant direction
fields. If ��V�� � ��V�� and ��V�

�� � ��V�
�� then the directions of the vectors of V� and

V� coincide in every point.

See [8] for a proof. Theorem 2 has an interesting consequence: the curvatures of V and
V � together contain all information about the directions of the vectors in V . Therefore, the
curvatures of V and V � contain all information about the topology of V . This statement is
true for vector fields of general topology.
Pictures e-h of figure 4 show a linear vector field with a repelling focus. Figure 4e is the
numerical stream line integration, figure 4f is the curvature visualization. Figures 4h and 4g
show the same for the perpendicular vector field. The repelling node appears completely
green around the highlight in the curvature visualization and completely red in the cur-
vature visualization of the perpendicular vector field. Figures 4 i-l show the visualization
of a center. It appears completely green around the highlight in the curvature visualiza-
tion (figure 4j) and has 4 different areas (colored red or green) each of 90 degrees in the
perpendicular curvature visualization (figure 4k).
All critical points of figure 4 are of first order, i.e. they have det�Vx� Vy� �� � in the critical
points. They can therefore be classified using the topology concepts described in [3]. Figure
4 also shows that the different kinds of critical points appear differently in the curvature
visualizations. A detailed description of how to classify a first order critical point from the
curvature visualization can be found in [9].
Figure 5 shows a collection of higher order critical points, i.e. points with det�Vx� Vy� � �.
None of these points can be treated using the topology methods of [3] but their curvature
visualization gives a fairly good impression of them. Figures 5 a-d show a saddle point
with 4 pairs of tangent curves through it. In the curvature visualization (figure 5b) we have
eight differently colored sections around the critical point. The perpendicular field (figure
5c) has eight different sections as well. Figure 5 e-h shows the visualization of the vector
field V �x� y� � �y�� x��T in the range ��
� 
� � ��
� 
�. This vector field has a critical
point with two elliptic sections in ��� ��. Observing the stream line integration (figure 5e),
this critical point may be missed. The curvature visualization (figure 5f) shows it clearly
as a highlight with six differently colored sections around it. Here the visualization of the
perpendicular curvature has two differently colored areas (figure 5g). Figures 5 i-l show the
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Figure 5: Higher order saddle point (a..d); critical point with two elliptic sectors (e..h);
dipole (i..l)

visualization of a vector field describing a dipole. Both the visualization of its curvature
(figure 5j) and its perpendicular curvature (figure 5k) show two differently colored sections
around the highlighted critical point.
A general algorithm which infers the topology of higher order critical points from the
curvature visualizations is still unknown. Nevertheless, the higher order critical points of
figure 5 can be well distinguished from the first order critical points of figure 4 by their
curvature visualizations.

4 The Integrate and Draw Visualization Technique

Another global visualization technique which was developed in the context of an Internet
environment is Integrate and Draw (Idraw) ([5]). Idraw can be considered as an extension
of the well-known Line Integral Convolution (LIC) method ([2], [7]).
Because of the nature of the LIC algorithm which averages pixel values along a field line,
the resulting image tends to be muddy and difficult to see. A solution to this problem is
to alter the length of convolution used in Cabral and Leedom’s LIC algorithm ([2]). When
longer convolution length are used, a higher number of pixels on a particular flow line are
assigned to similar pixels color values. Unfortunately these results come at a performance
cost ”where doubling the length increases computation by a factor of four” ([4]).
The ideal output image would consist of a series of long thin distinct contrasting lines,
depicting the streamlines. IDraw simply follows this idea and draws each field line with
a different color. In the algorithm for each uncovered pixel in the output image, a new
streamline is computed and a random color (a gray level between 0 and 255) is assigned to
it. Then this streamline is mapped with its color onto the output image (see figure 6 left).
When two or more streamlines coincide at a pixel, their gray levels are simply averaged.
The result of this idea is illustrated in Figure 6 (right). The resulting images are similar
to LIC images, but faster to compute, because, as the name of the algorithm suggests, this
method results in simply drawing streamlines without any convolution taking place.
Figure 6 (middle and right) illustrates the enhancements of IDraw images with respect to



Figure 6: left: IDraw - the stream lines are mapped with random colors onto the output
image; middle: LIC examples (flow around a cylinder,field if a dipole anntenna); right:
IDraw examples

LIC images. By drawing more solid lines that do not undulate as frequently in value, the de-
lineation of the flow lines has been improved. Thus, the image contrast has been increased
and the vector field structure has became clearer. The Integrate and Draw algorithm can
also be efficiently used for smooth detail enlargement. Using traditional LIC it is hard to
visualize a vector field at different resolutions. It would require to use a resampled input
texture as well as a resampled vector field. This can be easily accomplished with Integrate
and Draw since it does not use any input texture. It is sufficient to use a smaller step size
while integrating the stream lines. See [5] for more information about how smooth zooms
can be accomplished with Integrate and Draw.

5 Hybrid Visualization Techniques

IDraw images are grey-scaled while the visualization of features like curvature give a color
image. So it makes sense to combine both kinds of visualization techniques in order to
more intuitive vector field visualization techniques. A simple linear interpolation between
the IDraw image and the feature image gave satisfying results:

N � �
� t� � I� t � F

where I is the IDraw image, F is the feature image, and N is the newly created image. The
parameter t can be used to emphasize either the one or the other image. Figure 7 illustrates
the combination of IDraw and curvature plots.
Figure 8 shows two examples where other feature images were used. The left-hand image
shows a combination of IDraw with a color coding of the flow direction in each point for
t � ��
. Shown is the flow in a bay area of the Baltic sea (Greifswalder Bodden). The
right-hand image of figure 8 shows the combination of IDraw with a color coding of the
vector magnitude in each point. Shown is the electrostatic field of a Benzene molecule.



Figure 7: linear interpolation between Idraw (left) and curvature plot (right)

Figure 8: left: combination of IDraw and color coding of vector direction; right: combina-
tion of IDraw and color coding of vector magnitudes

6 Conclusions

We have presented the system CurVis for visualizing vector fields on the internet. As part of
CurVis the new global visualization techniques curvature plots and IDraw were developed.
Figure 9 shows two screendumps of the CurVis system.
CurVis can be accessed at
http://www.informatik.uni-rostock.de/Projekte/movi/IIS/curvisrdr.html
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Figure 9: left: CurVis - start page; right: CurVis - curvature visualization
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