
Shape Matching Based on Fully Automatic Face
Detection on Triangular Meshes

Wolfram von Funck, Holger Theisel, and Hans-Peter-Seidel

MPI Informatik, 66123 Saarbruecken, Germany,
{wfunck,theisel,hpseidel}@mpi-inf.mpg.de

Abstract. This paper tackles a particular shape matching problem: given a data
base of shapes (described as triangular meshes), we search for all shapes which
describe a human. We do so by applying a 3D face detection approach on the
mesh which consists of three steps: first, a local symmetry value is computed
for each vertex. Then, the symmetry values in a certain neighborhood of each
vertex are analyzed for building sharp symmetry lines. Finally, the geometry
around each vertex is analyzed to get further facial features like nose and fore-
head. We tested our approach with several shape data bases (e.g. the Princeton
Shape Benchmark) and achieved high rates of correct face detection.

1 Introduction

Due to the fast development of new 3D scanning and modelling techniques, the num-
ber and complexity of surfaces which Computer Graphics deals with is currently dra-
matically increasing. Because of this, the retrieval and search of shapes in the internet
becomes an important and challenging issue. Shape matching aims in choosing shapes
of certain characteristics out of a shape data base. These characteristics are usually the
similarity to a given shape which is described either as a particular surface, a sketching,
or a rather abstract description [1]. Recently, a number of shape matching approaches
have been developed which are based on shape histograms [2], extended Gaussian im-
ages [3], spherical extend functions [4, 5], shape distributions [6], spherical harmonics
[7], light fields [8], 3D Fourier transforms [9], the topology of Reeb graphs [10], or
anisotropy [11]. A part-in-whole approach was introduced by [12] which allows search-
ing 3D models with parts matching a query.

The problem we want to tackle in this paper is a particular shape matching problem
which can be formulated as follows:

Problem 1. Given a data base of shapes, get all which describe a human.

The main application of this problem relates to the applications of shape matching in
general: imagine a user who wants to build up a virtual 3D scene of many different
humans in different positions. Instead of modelling them, he or she may search the
internet for appropriate shapes.

Figure 1 shows a number of shapes which obviously describe humans in different
positions and states of completeness. Contrary, figure 3 shows a number of shapes which
do not describe humans. Note that the above-mentioned shape matching approaches

detect significantly different shapes in the examples of figure 1. This is due to the fact
that we did not make any assumption about the position of the human body. Arms and
legs may be outstretched (figure 1 (a)) or bent (figure 1 (b)), merged with the rest of the
body (figure 1 (c)) or even non-existing at all (figure 1 (d), (e)). Since shape matching
algorithms are sensitive against these features, they tend to give a higher similarity for
instance between the shapes in figures 1 (a) and 3 (c) than between the shapes 1 (a)
and 1 (c). Hence, the above-mentioned shape matching approaches are not suitable for
problem 1.

Our starting point for a solution of problem 1 lies in the assumption that a shape
describing a human should contain the human’s face. (In fact, this seems to be the only
property which all examples of figure 1 have in common.) Hence we can reformulate
problem 1 to

Problem 2. Given a data base of shapes, find all shapes which contain a human’s face.

Note that problem 2 does not make any assumption about size and location of the face.
Neither it does about size and resolution of the model. The only assumption we use is
that – if the shape describes a human – only one human (and nothing more) is contained
in the shape. We also assume that the shapes are described as triangular meshes, and – if
a face is present – the part of the mesh representing the face has a disc-like topology, i.e.,
it is a manifold without holes. Then problem 2 appears to be a face detection problem
for triangular meshes.

A variety of algorithms for detecting faces in images has been developed which
roughly can be classified into knowledge base methods [13, 14], feature based methods
[15, 16], template matching [17], and appearance based methods. Having these algo-
rithms available, a straightforward approach to detect faces on meshes is to render the
meshes from different view points and then apply 2D face detection methods on the
resulting images. However, this approach appears to be not reliable because of two rea-
sons: First, there is no control about how many and which view points to choose for
rendering. Second, there is no texture information in the mesh which gives for instance
different colors for a face and the surrounding hair. Because of this, we have to apply
face detection approaches which work directly on the meshes.

A well-researched problem on triangular meshes is the problem of face recognition
[18–21]. For this class of problems an a-priory knowledge about the location of a face
is assumed. In this sense, our problem 2 can be considered as a preceding step of 3D
face recognition.

The face of a human is approximately mirror-symmetric. This fact – already used
for face detection in 2D images [22] – gives the key of our approach: we search for face
symmetry lines as shown in figure 2 (a).

The paper is organized as follows: Section 2 describes our detector for the case that
the size (given by a radius) of the face is known. Section 3 extends this to the case of an
unknown radius of influence. In section 4 we apply our algorithm to several representa-
tive data sets. Section 5 draws conclusions and mentions issues in future research.

2 Our Approach - Single Search Radius

Symmetry is a feature which is well-researched in Computer Vision both for images
and for 3D objects. Generally, two kinds of symmetry can be distinguished: rotation
and mirror symmetry where for our purposes we are interested in the last-named.

For 2D images, most of the existing work considers symmetry as a binary feature
(i.e., and object is symmetric or not [23, 24]). In addition, [25, 26, 22, 27] compute sym-
metry as a local feature and apply it to detect faces in 2D images. For 3D objects, mirror
symmetry is usually considered as a global feature. This means that a main symmetry
plane is searched [28], or all symmetry planes through the center of gravity are eval-
uated [29]. What we need for our purpose is a local symmetry detection on a surface.
This means that we need two pieces of information for each surface point: the strength
of local symmetry ("how symmetric is the surface at a certain point?"), and the best
symmetry axis. These values depend on the choice of a search radius r: only the parts
of the surface with a distance smaller than r are incorporated in the local symmetry
analysis. Thus, the evaluation of local symmetry is always connected to a particular
choice of r. The best detection of a symmetry line in a face can be expected if r is ap-
proximately half the diameter of the face. If r is larger, other parts of the human body
influence the analysis while a smaller r detects too many symmetry lines on a face.

In this section we describe our symmetry-based face detection approach for the
case of a particular given symmetry radius r. This means that we decide whether or not
the mesh contains a face of approximately the diameter 2r. For doing so, we start to
compute symmetry values for each vertex.

2.1 Computing the Symmetry Field

Let M be a triangle mesh with vertices V (M). For each vertex v ∈ V (M), pv denotes
the vertex position, while nv is the (exact or estimated) normal in v. Then let dist(p,d)
denote the minimum (signed) distance of point p along direction vector d to the surface
defined by M, where dist(p,d) = ∞ if there is no intersection. We compute dist(p,d)
by a raytracing approach using a kd-tree.

For each vertex v of the mesh, we sample a height field on a circle in the tangent
plane through pv by measuring the distance in normal direction to the mesh at a number
of sample points (figure 2 (b)). In order to discard small-scale variations of the normals,
we use an average surface normal ñv of all vertices which have an Euclidian distance
smaller than r:

ñv =
∑u∈Nv wunu

‖∑u∈Nv wunu‖
with Nv = {u ∈V (M) : ‖pv −pu‖ ≤ r}, (1)

where wu is the total area of the triangle fan surrounding vertex u. ñv can be considered
as a strong smoothing at v. Now, we choose two orthogonal normal vectors xv and yv
which are perpendicular to ñv. We sample the height field in this plane on nC concentric
circles where nR sample points are placed equidistantly on each circle (we used are
nC = 8 and nR = 64). This way we get all sample points as

sv(iC, iR) = pv +
iC +1

nC
· r · cos

(

iR
nR

·2π
)

·xv +
iC +1

nC
· r · sin

(

iR
nR

·2π
)

·yv (2)

Fig. 1. A collection of human shapes.

Fig. 2. (a) A face with a symmetry axis. (b)
Sampling the surface around vertex v. (c) The
mirror axis corresponding to rotation index iR.

Fig. 3. Non-human shapes.

Fig. 4. Some meshes and their symmetry
fields.

for iC = 0, ...,nC − 1 and iR = 0, ...,nR − 1. We can compute the height map hv at each
sample point as

hv(iC, iR) = dist(sv(iC, iR),−ñv). (3)

Using this, measuring the symmetry of the surface surrounding v is quite straightfor-
ward. As illustrated in figure 2 (c), each rotation index corresponds to a mirror axis that
can be used for symmetry analysis. Basically, we simply have to compare the sample
values on the one side of the mirror axis with the values on the other side. Since we want
to constrain the analysis to the surface close to v, we limit the valid height map values
to the range [−r,r]. Hence for each mirror axis, defined by rotation index iR, we define
a set of valid mirror pairs Mv(iR) = {(iC, iR1, iR2) : hv(iC, iR1) ∈ [−r,r]∧ hv(iC, iR2) ∈
[−r,r]∧ iR2 = 2iR − iR1 −1}. Now we can measure the error between both sides of the
mirror axis by computing the mean difference between the sample values of all mirror
pairs:

ev(iR) =
1

|Mv(iR)| ∑
(iC ,iR1,iR2)∈Mv(iR)

‖hv(iC, iR1)−hv(iC, iR2)‖ (4)

To get a meaningful symmetry measure from this value, we normalise it by dividing
it by the maximum difference of valid height map values. We define the symmetry
measure of v as:

sv = 1−
min

iR∈{0,...,nR−1}
ev(iR)

max
(iC ,iR)∈Dv

hv(iC, iR)− min
(iC ,iR)∈Dv

hv(iC, iR)
(5)

where Dv = {(iC, iR) ∈ {0, ...,nC −1}×{0, ...,nR −1} : h(iC, iR) ∈ [−r,r]} is the set of
valid samples. Furthermore, we can compute the normal of the corresponding mirror
plane as follows: First, we get the rotation index iv = argminiR∈{0,...,nR−1}ev(iR) and the
corresponding rotation angle αv = (iv − 1

2) · 2π
nR

+ π
2 . Finally, we get the symmetry plane

Fig. 5. (a) Smooth surfaces are highly symmet-
ric. (b) Symmetry decrease in human faces. Fig. 6. The extracted symmetry lines.

normal:
mv = cos(αv) ·xv + sin(αv) ·yv (6)

2.2 Analysis of the Symmetry Field

As expected, the symmetry values are high for vertices located close to the horizontal
center of a human face (see figure 4). Furthermore, the symmetry values are very low
for most of the other vertices on the face. This results in a sharp line of high-symmetry
vertices running from the forehead over the nasal bone to the mouth. Figure 5 (a) shows
that other areas are detected to have a high symmetry as well. In the following section,
we provide an algorithm that can be used to extract those significant areas.

2.3 Extracting Symmetry Features

Let sym(p,d) denote the linearly interpolated symmetry value at the intersection point
between the mesh surface and the ray from p along d. Analogically to the height map
hv, we can sample the symmetry values around a vertex v:

σv(iC, iR) = sym(sv(iC, iR),−ñv) (7)

This function uses the same sample distribution as hv. We want to extract those parts
of the symmetry field that form narrow areas of high symmetry, bordered by areas
of low symmetry. More precisely, we want to measure how much the symmetry values
decrease in both directions orthogonal to the symmetry plane at vertex v. We can project
every sample point into the symmetry plane normal mv (i.e. compute its signed distance
to the symmetry plane) and normalise it with respect to the symmetry radius r, obtaining
a scalar value:

dv(iC, iR) =
(sv(iC, iR)−pv) ·mv

r
(8)

For each side of the mirror plane, we can define a set of two-dimensional points:

Rv = {(dv(iC, iR),sv −σv(iC, iR)) : (iC, iR) ∈ Dv ∧ iC <
nC

2
∧dv(iC, iR) > 0}

Lv = {(dv(iC, iR),σv(iC, iR)− sv) : (iC, iR) ∈ Dv ∧ iC <
nC

2
∧dv(iC, iR) < 0}

(9)

The first coordinate of each point corresponds to the normalised distance of sample
(iC, iR) to the symmetry plane. The second coordinate is the difference between the
symmetry value of v and the symmetry value of sample (iC, iR), where this difference
is negated in Rv. The reason for this negation will become clear in the next step. Note
that only samples whose circle index iC is smaller than nC

2 are considered because it has
turned out that the decrease of symmetry in human faces ranges from the face center
approximately to half of the symmetry radius (see figure 5 (b)). In the next step, we fit a
line through origin to the points in Rv ∪Lv. Since we negated the symmetry coordinates
of the points in Rv, the gradient of the line will be positive if the symmetry decreases in
both directions. The value of the gradient is computed as follows:

gv =
∑(d,s)∈Rv∪Lv d · s

∑(d,s)∈Rv∪Lv d2 (10)

The complete extraction process is depicted in figure 7. Expressed graphically, gv weak-
ens the large high-symmetry areas of the symmetry field mentioned above and intensi-
fies the narrow lines of high symmetry as found in human faces (figure 6)). Interestingly,
a common threshold seems to exist for all human faces that can be used to classify a ver-
tex (more precisely its surrounding surface) as symmetric or non-symmetric. Provided
that the symmetry radius r matches approximately the size of the face, by marking only
those vertices whose gradient value gv exceeds the threshold, a complete line of vertices
running from the root of the nose to the nose tip is marked for all kinds of human faces
(see figure 11). In our implementation, we used the threshold tSym = 0.06. This way, the
number of potential face vertices has been decimated by a large amount and we even
have an indication for the orientation of the face (symmetry plane direction mv) as well
as for the size of the face (radius r).

2.4 Analysis of the Face Geometry

In the following section, we examine the surrounding surfaces of all vertices that have
been classified symmetric. More precisely, we try to find out if these vertices are located
on the nose tip of a human face. Given a potential “nose tip vertex” v, we know that the
corresponding face has two possible up-directions:

u1
v = ñv ×mv and u2

v = −ñv ×mv (11)

From now on, the up-vector is simply referred to as ua
v since the algorithm works ana-

logically for u1
v and u2

v .
First we analyse the curves running horizontally from the nose over the cheeks as

illustrated in figure 8 (a). Since the curves may run both over the left and the right side,
we define a direction vector db

v with d1
v = mv and d2

v = −mv. Given the number of
curves nY , the iY -th curve is defined by

ca,b
v (iY ,x) =

1
r

dist(pv +
iY

nY −1
·

r
2
·ua

v + x ·db
v ,−ñv). (12)

First of all, we measure how far the potential nose sticks out of the face with respect
to the cheeks (figure 8 (b)):

noseheighta,b
v =

1
nY

nY −1

∑
iY =0

(ca,b
v (iY ,

r
2
)− ca,b

v (iY ,0)) (13)

Next, we measure the mean nose width. For each curve, we define the width as
the position within the range [0,

3
4 r] where the curve gradient is maximal (figure 8 (c)).

Given nX samples per curve, we get the mean nose width

nosewidtha,b
v =

1
nY

nY −1

∑
iY =0

wiY (14)

with wiY = 3
4nX

argmaxiX∈{1,...,nX}
(ca,b

v (iY ,
iX
nX

· 3
4 r)− ca,b

v (iY ,
iX−1

nX
· 3

4 r)).
All curves should begin with a bulge and end with a relatively flat region. Figure 10

(a) shows how we can measure two heights on the curve whose difference gives us a
meaningful value. By computing the mean value of all curves we get

nosecurvea,b
v =

1
nY

nY −1

∑
iY =0

(ca,b
v (iY ,wiY +

r
4
)− ca,b

v (iY ,0)

−|ca,b
v (iY ,wiY +

r
2
)− ca,b

v (iY ,wiY +
r
4
)|).

(15)

The nose and the cheeks are quite smooth and contain no cracks. We cope with this
fact by fitting a quadratic B-spline to each curve and measuring the error, as illustrated
in figure 10 (b). Let splinedista,b

v (iY) denote the maximum height difference between
curve iY and its corresponding B-spline. Then the mean smoothness error is defined as:

f acesmoothnessa,b
v =

1
nY

nY −1

∑
iY =0

splinedista,b
v (iY) (16)

The nose bridge is relatively smooth and contains no cracks. Hence we measure
the maximum distance between the nose profile and the straight line from the nose
tip to the root (figure 10 (c)). Given the nose profile as height function nosea

v(y) =
1
r dist(pv + y ·ua

v ,−ñv), we can define the line as

noselinea
v(y) = y ·

nosea
v(

3
4 r)

3
4 r

(17)

We suspect the nose root of being located at a distance of 3
4 r upwards the nose tip. Then

we can measure the error with

nosesmoothnessa
v = maxdist(nosea

v ,noselinea
v) (18)

Noses stick out of the face, especially with respect to the region directly below the
nose tip (figure 10 (d)). Thus, we measure the minimum distance to this spot.

nosebottoma
v =

1
r

min
iX∈{−nX ,...,nX}

dist(pv −0.2 · r ·ua
v +

iX
2nX

r ·mv,−ñv) (19)

Next, we measure the smoothness of the forehead by sampling the heights of a
rectangular region on the forehead (figure 9 (a)):

headsmoothnessa
v =

maxH −minH
r

(20)

with H = dist(pv +(1.3+0.2 iY
nY −1 r)ua

v +0.5 iX
nX

mv, ñv) : (iX , iY) ∈ {−nX , ...,nX}×

{0, ...,nY −1}}.
Another feature of human faces is the convexity of the forehead (figure 9 (b)). Hence

we compute the difference between the central and outer height of the forehead:

headconvexitya,b
v =

1
r
(dist(pv +1.3 ·ua

v +0.8 ·db
v ,−ñv)−dist(pv +1.3 ·ua

v ,−ñv)) (21)

The last property we examine are the eyes. Depending on the mesh resolution the
eyes are described more or less detailed, but the eye-sockets should always be present.
As figure 9 (c) shows, the eye-sockets are located deeper in the head than the forehead.
We scan the region where the eye is assumed and compute the difference between the
largest height value and the height of the forehead center:

eyedeptha,b
v =

1
r
(max{dist(pv +(0.5+0.4

iY
nY −1

r)ua
v +(0.2+0.3

iX
nX −1

)db
v ,−ñv) :

(iX , iY) ∈ {0, ...,nX −1}×{0, ...,nY −1}}
−dist(pv +ua

v ,−ñv))
(22)

Using all the measures defined above, we impose the following set of constraints
that need to be fulfilled if a vertex v is located on the nose tip of a human face:

noseheighta,1
v > cNH ∧noseheighta,2

v > cNH ∧

nosewidtha,1
v < cNW ∧nosewidtha,2

v < cNW ∧

nosecurvea,1
v > cNC ∧nosecurvea,2

v > cNC ∧

f acesmoothnessa,1
v < cFS ∧ f acesmoothnessa,2

v < cFS ∧

eyedeptha,1
v > cED ∧ eyedeptha,2

v > cED∧

headconvexitya,1
v > cHC ∧headconvexitya,2

v > cHC∧

nosesmoothnessa
v < cNS ∧nosebottoma

v > cNB ∧headsmoothnessa
v < cHS

(23)

The parameters cNH–cHC are supposed to be constant for all meshes and can be
trained (manually) with a database of human and non-human meshes (see section 4).

3 Our Approach - All Radii

Up to now our face detection approach was based on a particular choice of the search
radius r: this way faces of the approximate diameter 2r are detected (or excluded) on
a mesh. In fact, all thresholds and parameters of the approach are tuned to depend
exclusively on r. For the complete solution of problem 2, we would have to apply the

algorithm for all r. However, the following observations lead to the results that only a
certain number of search radii have to be checked: First, the face detection algorithm
appears to be rather stable against small variations of r. In fact, a face with a diameter
f d is generally detected for any choice of r between 0.7 f d

2 and 1.2 f d
2 . Second, giben

the size d of the whole mesh (which we estimate by the length of the diagonal of the
minimal enclosing bounding box), the diameter f d of the face is limited to a certain
interval. If the mesh describes a complete stretched-out human, we can estimate the
size of the face to be not smaller than 5% of the size of the mesh (f d ≥ 0.05d). On
the other hand, if the mesh describes only a face, then the size of the mesh and the face
coincide (f d ≤ d). Because of this, for each mesh we check 32 different search radii
r0,...,r31 which are chosen as r0 = 0.05 d

2 , r31 = 0.7 d
2 , and the remaining ri are placed in

a quadratic distribution between r0 and r31 allowing a higher density for smaller radii.
This way our algorithm becomes independent of any parameter.

4 Applications and Results

We trained the parameters cNH–cHC of the geometry constraints manually using the
Princeton Shape Benchmark and found the following configuration: cNH = 0.2, cNW =
0.4, cNC = 0.2, cFS = 0.2, cNS = 0.1, cNB = 0.1, cED = 0.1, cHS = 0.2, cHC = 0.01.
In order to test our approach, we applied it to several shape databases: The Princeton
Shape Benchmark [30] (our training database), the CCCC database [5], the Utrecht
database [31] and the aim@shape database [32]. Altogether, we tested 4429 meshes.
Most of the databases provide shape classifications like “human”, “human_arms_out”,
“head”, “face”. However, these classifications are inappropriate for our purpose due to
the following reasons: many of the shapes classified as human have holes (figure 14 (b))
or don’t contain human faces (figure 14 (c)). Therefore, we identified the human faces
in each database manually in order to evaluate the algorithm.

The Princeton Shape Benchmark consists of 1814 meshes. We identified 141 human
faces without holes. Many of these faces are very coarse and have non-human features
(figure 14 (a)). For this database, the algorithm detected 51 meshes to be human. All
detected shapes are indeed human, i.e. no non-human mesh was found. The CCCC
database contains 1841 meshes. We identified 49 valid faces, our algorithm detected
20. Again, no “wrong” face was detected. The Utrecht database consists of 684 meshes
and contains no human face. The algorithm correctly detected no face in this database.
Finally, we applied the algorithm to 90 high-resolution meshes of the aim@shape repos-
itory. 16 meshes have human faces, where 6 faces contain holes or are incomplete. The
algorithm detected 12 faces (figure 13) – although two detected faces contain holes –
and there was no incorrect detection.

The evaluation shows that the algorithm is able to detect humans in different states
of completeness: complete bodies (figure 12 left), incomplete bodies, heads and single
faces (figure 12 right). For a better visualisation, the application automatically displays
“glasses” on each detected face and marks the nose tip red. Furthermore, there was
no incorrect detection in all tested meshes. However, the algorithm cannot detect faces
with non-human features like non-convex foreheads, or faces hidden by masks, glasses
or hair. There were totally 11 non-detected meshes with one of these properties. The

remaining meshes that have not been detected are very coarse (figure 14 (a) shows some
examples): the number of face triangles lies between 50 and 400 and averages to 150.
In contrast, the average triangle number of the detected faces amounts approximately to
4000, i.e. the algorithm requires a certain resolution of the face meshes in order to work
reliably. The computing time for our approach is approximately linear to the number of
vertices in the mesh: an AthlonXP 2400+ processor with 512 MB RAM took approx. 15
minutes for a mesh with 20000 triangles, 40 minutes for 60000 triangles, and 70 minutes
for 100000 triangles. Since in our application scenario each mesh of a data base has to
be checked only once and the result can be stored with the mesh, our algorithm can be
considered as a preprocess of a web-search for meshes describing humans.

5 Conclusions

In this paper we made the following contributions: We introduced a domain-specific
shape matching approach which is based on a fully-automatic face detection on trian-
gular meshes. To decide whether a mesh contains a human face, each vertex undergoes
a three-step test for being part of a face. This test is repeated for different radii of in-
fluence to ensure that faces of arbitrary scaling are detected. We trained the parameters
of our algorithm and applied it to a number of different shape databases. No wrong
face was detected. In general, we detected most faces as long as they did not contain
holes and had a sufficently high triangular resolution. We conclude that, given that the
meshes describe human faces in enough detail, the algorithm is able to differentiate
between human and non-human meshes very reliably. For future research we intend to
make the algorithm more robust against holes in the meshes, since a number of meshes
comes with holes in the eye and mouth regions.

References

1. Funkhouser, T., Min, P., Kazhdan, M., Chen, J., Halderman, A., Dobkin, S.: A search engine
for 3D models. ACM Transactiond on Graphics 22(1) (2003) 83–105

2. Ankerst, M., Kastenmüller, G., Kriegel, H.P., Seidl, T.: Nearest neighbor classification in
3D protein data bases. In: Proc. 7th International Conference on Intelligent Systems for
Molecular Biology. (1999) 34–43

3. Kang, S., Ikeuchi, K.: Determining 3-D object pose using the complex extended gaussian
image. In: IEEE Conf. on Comp. Vision and Patt. Recog. (1991) 580–585

4. Saupe, D., Vranic, D.: 3D model retrieval with spherical harmonics and moments. In:
Proceedings of the 23rd DAGM-Symposium on Pattern Recognition. (2001) 392–397

5. Vranic, D.: An improvement of rotation invariant 3D shape descriptor based on functions
on concentric spheres. In: Proc. IEEE International Conference on Image Processing (ICIP
2003),. (2003) 757–760

6. R.Osada, T.Funkhouser, B.Chazelle, D.Dobkin: Shape distributions. ACM Trans. Graph.
21(4) (2002) 807–832

7. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Rotation invariant spherical harmonic rep-
resentation of 3D shape descriptors. In: SGP ’03: Proceedings of the Eurographics/ACM
SIGGRAPH symposium on Geometry processing. (2003) 156–164

8. Chen, D., X. Tian, Y., Ouhyoung, M.: On visual similarity based 3d model retrieval. Com-
puter Graphics Forum 23(3) (2003) 223–232 (Proceedings Eurographics 2003).

Fig. 7. 1.+2. Sampling of symmetry values. 3.
Each sample is transformed to a 2D point (x
= distance to symmetry plane, y = symmetry
difference). 4. Fitting a line.

Fig. 8. (a) The curves that are analysed. (b)
Computing the nose height. (c) The nose width
w.

Fig. 9. (a) Measuring the forehead smooth-
ness. (b) The human forehead is convex. (c)
The eyes are located deeper in the head than
the forehead.

Fig. 10. (a) ∆h1 − ∆h2 is used to compute
nosecurvea,b

v . (b) We fit a quadratic B-spline to
the curve. (c) The deviation between the nose
profile and the straight line is very low. (d) The
nose tip sticks out.

Fig. 11. Marked vertices.

Fig. 12. Faces detected in complete bodies
(top) and incomplete bodies (bottom).

Fig. 13. Faces in the aim@shape database.

Fig. 14. Faces that could not be detected.

9. Vranic, D., Saupe, D.: 3D shape descriptor based on 3D fourier transform. In: Proc. ECMCS
2001. (2001) 271–274

10. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic
similarity estimation of 3D shapes. In: Proc. SIGGRAPH. (2001) 203–212

11. Kazhdan, M., Funkhouser, T., Rusinkiewicz, S.: Shape matching and anisotropy. In: Proc.
SIGGRAPH. (2004) 623–629

12. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S.,
Dobkin, D.: Modeling by example. ACM Transactions on Graphics (SIGGRAPH 2004)
(2004)

13. Yang, G., Huang, T.: Human face detection in a complex background. Pattern Recognition
27(1) (1994) 53Ű–63

14. Kotropoulos, C., Pitas, I.: Rule-based face detection in frontal views. In: ICASSP ’97:
Proceedings of the 1997 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP ’97) -Volume 4, IEEE Computer Society (1997) 2537

15. Leung, T., Burl, M., Perona, P.: Finding faces in cluttered scenes using random labeled graph
matching. In: Proc. Fifth International Conference on Computer Vision. (1995) 637–Ű644

16. Yow, K., Cipolla, R.: Feature-based human face detection. Technical report, Department of
Engineering, University of Cambridge, England (1996)

17. Sinha, P., Torralba, A.: Detecting faces in impoverished images. Journal of Vision 2(7)
(2002) 601a

18. Gordon, G.: Face recognition based on depth and curvature features. In: Proc. IEEE Confer-
ence on Computer Vision and Pattern Recognition. (1992) 108–110

19. Hallinan, P., et al.: Two- and Three-Dimensional Patterns on the Face. AK Peters, Natick
(1999)

20. Huang, J., Heisele, B., Blanz, V.: Component-based face recognition with 3D morphable
models. In: Proc. of the 4th Int. Conf. on Audio- and Video-Based Biometric Person Au-
thenticitation. (2003) 27–34

21. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans.
Pattern Anal. Mach. Intell. 25(9) (2003) 1063–1074

22. Zabrodsky, H., Peleg, S., Avnir, D.: Symmetry as a continuous feature. IEEE Transactions
on Pattern Analysis and Machine Intelligence 17(12) (1995) 1154–1166

23. Marola, G.: On the detection of the axes of symmetry of symmetric and almost symmetric
planar images. IEEE Trans. Pattern Anal. Mach. Intell. 11(1) (1989) 104–108

24. Shen, D., Ip, H., Cheung, K., Teoh, E.: Symmetry detection by generalized complex (gc)
moments: A close-form solution. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 21(5) (1999) 466–476

25. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Detection of interest points using symmetry. In:
ICCV90. (1990) 62–65

26. Reisfeld, D., Wolfson, H., Yeshurun, Y.: Robust facial feature detection using local symme-
try. In: Proc. International Conference on Pattern Recognition. (1990) 117–120

27. Kovesi, P.: Symmetry and asymmetry from local phase. In: AI’97. (1997) 185–190
28. Sun, C., Sherrah, J.: 3D symmetry detection using the extended gaussian image. IEEE Trans.

Pattern Anal. Mach. Intell. 19(2) (1997) 164–168
29. M.Kazhdan, Chazelle, B., Dobkin, D., Finkelstein, A., Funkhouser, T.: A reflective symme-

try descriptor. In: ECCV ’02: Proceedings of the 7th European Conference on Computer
Vision-Part II. (2002) 642–656

30. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. In: Proc.
Shape Modeling International. (2004) 167–178

31. Tangelder, J., Veltkamp, R.: Polyhedral model retrieval using weighted point sets (2003)
32. aim@shape: (2004) http://www.aimatshape.net.

