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ABSTRACT

We introduce a representation of a 2D steady vector field v by two scalar fields a, b, such that the
isolines of a correspond to stream lines of v, and b increases with constant speed under integration of
v. This way, we get a direct encoding of stream lines, i.e., a numerical integration of v can be replaced
by a local isoline extraction of a. To guarantee a solution in every case, gradient-preserving cuts are
introduced such that the scalar fields are allowed to be discontinuous in the values but continuous
in the gradient. Along with a piecewise linear discretization and a proper placement of the cuts, the
fields a and b can be computed. We show several evaluations on non-trivial vector fields.

Keywords Visualization · scalar fields · vector fields

1 Introduction

Scalar fields and vector fields are perhaps the most common data classes in (Scientific) Visualization. For both classes,
a huge amount of visualization techniques has been developed over the last decades. Vector fields are usually the more
complicated data class because firstly they contain more data per point in the domain and secondly transportation
issues of particles are involved. Because of this, scalar field visualization is much further developed than vector field
visualization.

A general approach to vector field visualization is to derive one (ore more) scalar fields from a vector field, and then
apply scalar field visualization on them. While many scalar fields have been proposed to visualize vector fields (like
vector magnitude, divergence, FTLE,...), all of them come with a loss of information. In particular, they do not encode
the transport of particles, i.e., the location of particles after a certain integration time cannot be computed (neither
directly nor indirectly by numerical integration) from these scalar fields.

Flow visualization has a variety of goals and applications, ranging from understanding of fundamental flow phenomena
to the analysis of concrete simulations or measurements. We identify generic problems that frequently occur in various
applications of flow visualization:

• The integration problem: many algorithms in vector field visualization are based on the numerical integration
of stream lines / particle trajectories. While stream line integration is numerically well-understood, it is still
source of error because of error accumulation during the integration. Error accumulation is an issue for every
numerical stream lines integration technique, no matter how involved it is.
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• The connectivity problem: many algorithms rely on an efficient approach to answer the following question:
given two points x1,x2, does a streamline starting from x1 hit the point x2? If not, on which side (in 2D) and
at which distance the line passes by?

These two problems are generic: they appear in many visualization techniques. Having efficient solutions for them
would affect different existing visualization techniques.

In this paper, we follow the established path of finding scalar fields representing vector fields. However, our new
approach is to find scalar fields that solve both the integration problem and the connectivity problem. In other words: we
search for derived scalar fields such that both integration and connectivity can be solved by a local lookup, a procedure
much faster and less error prone than numerical stream line integration. In particular, we want to find a scalar field such
that the stream lines of the vector field correspond to isolines of the scalar field.

Unfortunately, in general a scalar field with isolines following stream lines of vector fields does not exist. To overcome
this, we weaken our goal by allowing gradient-preserving cuts and a special treatment of critical points. With this,
we find scalar representations of vector fields that directly encode particle transportation. We apply our approach to
introduce a strictly local (i.e., without any numerical integration) image based flow visualization technique.

Notation

We consider a 2D steady vector field v(x) over a simple connected limited domain D ⊂ IR2 with disk topology where
δD is the boundary curve of D. We assume that δD is given as a closed differentiable parametric curve d(s). Let
ϕ(x, τ) denote the flow map of v, i.e., ϕ(x, τ) is the location to be landed by integrating v starting from x over an
integration time τ . Let J be the Jacobian matrix of v, and let

v(x) =
v

||v||
, w(x) =

(
0 −1
1 0

)
· v

be the normalized and normalized perpendicular field of v. Further, ∇a denotes the gradient of a scalar field a, while

∇⊥a =

(
0 −1
1 0

)
∇a denotes its co-gradient.

2 Problem description and analysis

Given a 2D steady vector field v(x), we search for two smooth and differentiable scalar fields a(x), b(x) with the
following properties:

∇a ̸= 0 (1)
vT∇a = 0 (2)
vT∇b = 1 (3)

for all x ∈ D. (1) and (2) make sure that a stream line of v is an isoline of a. (3) makes sure that b increases with unit
speed under integrating a stream line. This way, stream line integration in v reduces to isocurve intersection of a and b
by

a(ϕ(x, τ)) = a(x) , b(ϕ(x, τ)) = b(x) + τ. (4)

Unfortunately, a field a fulfilling (1), (2) does in general not exist. The simplest counterexample is the linear field
v(x) = (x, y)T for which no smooth field a can exist. In general, if v is divergence-free, a field a exists: the stream
function. Also for the field b, existence is not ensured: for divergence-free v, a contradiction in b is created on a closed
stream line after one turn.

In order to cope with the problem, we allow a certain weakening of the conditions for a, b that allow a unique solution
but still allow to solve the integration and connectivity problem by an isovalue lookup. In particular, we introduce two
concepts: gradient preserving cuts and a special treatment of areas around critical points.

3 Related work

We divide the review of existing work in four parts: vector field visualization, scalar field visualization, scalar field
representation of vector fields, and finding optimal cuts in shape processing.
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Vector field visualization Vector field visualization is one of the core topics in Scientific Visualization. While in
many cases the vector data describe flow phenomena, other effects represented by vector field data exist as well, such as
dynamical systems or magnetic fields. A variety of techniques for vector field visualization has been developed, ranging
from texture based techniques Laramee et al. [2004] over feature extraction Post et al. [2003], Günther and Theisel
[2017], topological methods Pobitzer et al. [2011a], Salzbrunn et al. [2008] until illustrative techniques Brambilla et al.
[2012]. Most relevant for our work are topological techniques because they develop a partition of the vector fields in to
critical points and separatrices of of relevance for the new approaches.

Topological methods for 2D vector fields have been introduced to the visualization community in Helman and Hesselink
[1989]. Later they were extended to higher order critical points Scheuermann et al. [1998], boundary switch points
de Leeuw and van Liere [1999a], and closed separatrices Wischgoll and Scheuermann [2001]. In addition, topological
methods have been applied to simplify de Leeuw and van Liere [1999a,b], Tricoche et al. [2000, 2001], smooth
Westermann et al. [2001], compress Lodha et al. [2000], Suresh Lodha and Renteria [2003], Theisel et al. [2003a] and
construct Theisel [2002], Weinkauf et al. [2004a] vector fields. 3D topological feature are considered in Globus et al.
[1991], Helman and Hesselink [1991], Mahrous et al. [2003, 2004], Theisel et al. [2003b], Weinkauf et al. [2004b].
State-of-the-Art-Reports on topological methods for flow visualization can be found in Laramee et al. [2007], Pobitzer
et al. [2011b], Wang et al. [2016], Heine et al. [2016].

Topological methods can be applied only to steady vector fields because they require integration over an infinitely long
integration time. For unsteady fields, Lagrangian Coherent Structures (LCS) have been established to find regions of
homogeneous flow behavior. One of the most prominent approaches for this is the computation of ridge structures
in FTLE fields, as introduced by Haller Haller [2001], Haller and Yuan [2000]. To consider spatial separation only,
Pobitzer et al. Pobitzer et al. [2012] weighted FTLE values by their angle to the separation direction. FTLE ridges were
proposed for a variety of applications Haller [2002], Lekien et al. [2005], Shadden et al. [2009], Weldon et al. [2008].
Shadden et al. Shadden et al. [2005] showed that ridges of FTLE are approximate material structures, i.e., they converge
to material structures for increasing integration times. This fact was used in Sadlo and Weiskopf [2010], Uffinger et al.
[2013] to extract topological structures and in Lipinski and Mohseni [2010] to accelerate the FTLE computation in 2D
flows. Also in the visualization community, different approaches have been proposed to increase performance, accuracy
and usefulness of FTLE as a visualization tool Günther et al. [2016], Garth et al. [2009, 2007], Sadlo and Peikert [2009,
2007], Sadlo et al. [2011].

In recent years approaches have evolved that aim at finding suitable moving frames of the underlying coordinate system
to study the flow Bhatia et al. [2014], Wiebel et al. [2007] or develop Galilean invariant detectors directly Bujack et al.
[2016]. This way, finite-time studies of time-dependent fields is lead back to a topological analysis of a derived steady
field.

We also note that discrete versions of vector field topology have been developed based on either Forman‘s discrete
Morse theory Forman [2001], Reininghaus and Hotz [2011] or Morse decomposition Mischaikow et al. [2007]. Other
approaches use edge maps Bhatia et al. [2012] or robustness considerations for critical points treatment Skraba et al.
[2016], Wang et al. [2013].

Scalar field visualization Scalar fields are another well-researched standard data class in Scientific Visualization.
A variety of techniques has been developed for scalar fields, ranging from isosurface extraction over direct volume
rendering to feature extraction. In particular, topological features have been proven successful. We mention Morse-
Smale complexes and the Reeb graph.

The Morse-Smale complex is a topological structure representing the gradient-flow behavior of a scalar field. Of
particular interest for visualization are combinatorial approaches based on piecewise linear scalar fields as introduced in
Edelsbrunner et al. [2001] and later extended in several ways Bremer et al. [2004], Edelsbrunner et al. [2003], Gyulassy
et al. [2005], Lewiner et al. [2004], Gyulassy et al. [2015, 2007]. The combinatorial approach makes the extraction of
Morse-Smale complexes relevant because it allows effective algorithms with guarantees about their correctness.

The Reeb graph considers components of contours and their topological changes. They have been applied to control the
removal of topological features Cignoni et al. [2000], Carr et al. [2004], Guskov and Wood [2001], Takahashi et al.
[2004], Carr et al. [2003], Tierny et al. [2012].

Vector field approximation by scalar fields Scalar fields are simpler structures than vector fields. So, it is not
surprising that research came up with approaches to represent vector fields (in particular flow fields and vorticity
fields) as scalar fields. The Clebsch map Clebsch [1859] represents divergence-free velocity and vorticity fields as a
certain combination of gradients of scalar fields. Such representations have been used to visualize Kotiuga [1991],
analyze Jeong and Hussain [1995] and simplify flows Brandenburg [2010], He and Yang [2016,?]. Unfortunately,
such representations cannot be exact in the general case Graham and Henyey [2000], resulting in either approximate
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Figure 1: Finding the fields a, b can be interpreted as searching for a domain transformation of v to (0, 1)T .

representations Chern et al. [2017] or applications restricting to certain subclasses of divergence-free vector fields
Angelidis and Singh [2007], von Funck et al. [2006].

Optimal cuts on shapes Many algorithms in Geometry processing require open surfaces with well-defined boundaries,
such as surface parametrization Zigelman et al. [2002], Hormann et al. [2008] or quad-remeshing Ebke et al. [2016],
Campen and Kobbelt [2014]. For closed input surfaces, cutting algorithms are necessary. Since the placement of
the cuts influences the result of the algorithms, "optimal" cuts are searched. Several criteria for optimality have been
proposed and applied Erickson and Har-Peled [2002].

4 Solution on simple vector fields

In this section, we provide a solution for a, b for simple vector fields.

Definition 1 A vector field v to be simple if it fulfills the following property: for every x ∈ D we reach the boundary
after a finite integration time both in forward and backward integration.

From this it follows that v has neither critical points nor closed orbits.

For simple vector fields, the search for a, b can be interpreted as a domain transformation of v in the domain D to
the constant vector field (0, 1)T in the new domain D′. Figure 1 gives an illustration. Note that (1)–(3) does not give
unique solutions for a, b. Among all solutions for a, b, we search for the ones the with∫

D

(∥∇a∥ − ∥v∥)2dx → min (5)∫
D

∥∇b∥2dx → min . (6)

Given a point x ∈ D, let τ0(x), τ1(x) be the integration time to reach the boundary of D starting from x in backward
and forward direction respectively, i.e.:

τ0(x) ≤ 0 ≤ τ1(x) (7)
ϕ(x, τ0(x)), ϕ(x, τ1(x)) ∈ δD (8)

ϕ(x, τ) /∈ δD for τ ∈ ]τ0(x), τ1(x)[. (9)

Further, we define the end points of the integration from x as d0(x) = ϕ(x, τ0(x)) and d1(x) = ϕ(x, τ1(x)). Also, we
define the boundary points in terms of the parametrization s for the boundary curve s(s): s0(x), s1(x) are defined by

d(s0(x)) = d0(x) , d(s1(x)) = d1(x). (10)

Figure 2 gives an illustration. Since v is simple, there is a unique τ0, τ1,d0,d1, s0, s1 for every x ∈ D. Also, (4) gives
that it is sufficient to compute a, b, on the boundary of D only by

a(x) = a(d0(x)) = a(d1(x)) (11)
b(x) = b(d0(x))− τ0(x) = b(d1(x))− τ1(x) (12)

4.1 Computing a, b

The computation of both a and b is done in the following steps:

4



Scalar Representation of 2D Steady Vector Fields

Figure 2: Definition of τ0(x), τ1(x), d0(x),d1(x).

1. Compute as(s) =
d a(d(s))

d s , and bs(s) =
d b(d(s))

d s , i.e., the derivatives of a, b along the boundary curve.
2. Compute a(s) = a(d(s)), b(s) = b(d(s)) by integrating as(s), bs(s), respectively.
3. Compute a(x), b(x) in the inner domain by applying (11), (12).

Computing a

For x ∈ D, we compute the separating function Friederici et al. [2017] along the stream as

sl(x, τ) =

∫ τ

τ0(x)

w(ϕ)TJ(ϕ) w(ϕ) dr (13)

with ϕ = ϕ(x, t) that describes the behavior of "adjacent" isolines in a. We search for the scalar sm(x) minimizing∫ τ1(x)

τ0(x)

(
e−sl(x,τ)−sm(x) − ∥v(ϕ(x, τ))∥

)2

dτ → min . (14)

Fortunately, this has a closed form solution for sm(x):

sm(x) = ln

 ∫ τ1(x)

τ0(x)
(e−sl(x,τ))2dτ∫ τ1(x)

τ0(x)
∥v(ϕ(x, τ))∥e−sl(x,τ)dτ

 . (15)

Finally, we compute
s(x) = sl(x, 0) + sm(x). (16)

The field s(x) steers the gradient of a by
∇a = e−sw. (17)

Computing b

If b is set on a stream line, we need to set it on the "adjacent" stream line as well. In other words, we need to study and
optimize the behavior of ∇b. It turns out that – similar to a – we have one degree of freedom to steer ∇b along the
stream line. In the best case we would have (∇a)T∇b = 0. However, if we set this property in x, it does not advect
along the stream line.

At a point x, we consider a point y in its neighborhood and observe y− x under the local (changing) coordinate system
(v,w):

p = vT (y − x) , q = wT (y − x) , r =
p

q
= tanα. (18)

Figure 3 gives an illustration of the setup.

We assume that (y − x) is the direction of the co-gradient of b. We observe how, p, q, r behave over stream line
integration:

dp

dτ
= vTJv p+ (vTJw +wTJv) q (19)

dq

dτ
= wTJw q (20)

dr

dτ
= (vTJv −wTJw) r + (vTJw +wTJv). (21)
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Figure 3: setup of local moving coordinate system.

With (21) we can compute the optimal r along a stream line by∫ τ1(x)

τ0(x)

(r(ϕ(x, τ)))2dτ → min . (22)

This should be linear in r. Note again that r defines the direction of the co-gradient of b. Together with (3), ∇b is
uniquely defined.

5 Gradient-preserving cuts

Keep in mind that the approach to compute a and b in section 4 works only on simple vector fields. To make it applicable
to every vector field, we introduce gradient-preserving cuts.

In the following we give a definition of gradient-preserving cuts of a 2D scalar field along a cutting curve c(t):

Definition 2 Given is a 2D scalar field s(x, y) and a regularly parametrized curve c(t) in the domain of s. We assume
s to be at least C1 continuous outside c. The field s has a gradient-preserving cut along c if

1. s is undefined on c.

2. limx→c(t),left s(x)− limx→c(t),right s(x) = h

3. limx→c(t),left ∇s(x) = limx→c(t),right ∇s(x)

where limx→c(t),left considers all points x being "left" of the curve, i.e., det(ċ(t), (x− c(t)) > 0 and ċ is the tangent
vector of c. Further, h is a non-zero constant.

Definition 2 states that along c(t), s has a well-defined discontinuity but nevertheless a continuous gradient. Figure 4
shows an example of a gradient-preserving cut of a 1D function s(x). Figure 5 shows a 2D gradient-preserving cut

Figure 4: left: 1D field with gradient-preserving cut; right: its derivative.
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in a scalar field as hight field along with isolines. Note that the isolines appear continuously even though the field
has a cut. Since scalar fields with gradient-preserving cuts are gradient continuous, they have continuous gradient

Figure 5: left: 2D field with gradient-preserving cut as height field; right: isocontours

and co-gradient fields. Hence, the potential advances still hold under slight modifications of the algorithms: for
isocontouring approaches to integrate a co-gradient field, the consideration of an offset h of isovalues across the cutting
curve is necessary. For an integration of a gradient ascent/descent, a special treatment across the cutting curve is
necessary.

6 Treatment of critical points

Consider the 2D linear vector field v(x) = Jx which has a critical point at the origin. Depending on an eigenanalysis
of the Jacobian J, we discuss the following cases (let λ1, λ2 be the eigenvalues of J and r1, r2 the corresponding
eigenvectors):

Case 1: v has a saddle, i.e., λ1 < 0 < λ2. In this case it is a straightforward exercise in algebra to that the scalar field

s(x) = det(x, r1)
−λ1 det(x, r2)

λ2 (23)

with pq = sign(p) ∥p∥q fullfills 2., i.e., vT∇s = 0. Note that (23) does not even need a gradient-preserving cut to

fullfill 2. Figure 6 illustrates this for the example field v1 =

(
−2 3

2
0 1

)
x by showing the LIC image of v (left), s as

height field (middle), and isocontours of s (right).

Case 2: v has a source or a sink with real eigenvalues of v, i.e., λ1 ≤ λ2 < 0 or 0 < λ1 ≤ λ2. In this case the scalar
field

s(x) = arctan
(
det(x, r1)

−λ1 det(x, r2)
λ2
)

(24)

fulfills 2. Moreover, here we have a gradient-preserving cut starting from the origin that is due to the arctan function.

Figure 7 illustrates this for the vector field v2 =

(
2 − 1

2
0 1

)
x.

Case 3: v is a source or a sink with imaginary eigenvalues of J, i.e., a swirling behavior around the critical point. In
this case, the scalar field

s(x) = α arctan

(
aTx

β bTx

)
+ β ln(xT Cx) (25)
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Figure 6: Linear vector field v1 containing a saddle; LIC image of v1 (left), s as height field (middle), isocontours of s
(right).

Figure 7: Linear vector field v2 with two positive real eigenvalues of J; LIC image of v2 (left), s as height field
(middle), isocontours of s (right).

with

R =

(
0 −1
1 0

)
, Ĵ =

1

2

(
RJ+ (RJ)T )

)
, α = Trace(J)

β =

√
∥ det Ĵ∥ , aT = (1, 0) Ĵ , bT = (1, 0)R , C = Ĵ.

Figure 8 illustrates this for the field v3 =

(
1 4
−2 3

)
x.

Based on these cases, we formulate the following:

Corollary 1 Every 2D linear vector field can be described as co-gradient field of a scalar field a with a gradient-
preserving cut.

7 Placement of the cuts

Cuts must be placed such that all critical points are covered and the vector field v is divided into a set of simple vector
fields. To this end, we set the cuts manually by defining a polygon connecting all critical points and to connect to one
additional point at the boundary of the domain. A similar approach for defining cuts has been applied in Theisel et al.
[2004] to compute isolated closed stream lines.

8
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Figure 8: Vector field v3 with imaginary eigenvalues of the Jacobian; LIC image of (left), s as height field (middle),
isocontours of s (right).

8 Discretization and solution

We assume a piecewise linear vector field over a triangulation of the domain D. We search for piecewise scalar fields
a, b over the same triangulation, i.e., the unknown scalar values a, b at the vertices of the triangulation. The general
algorithm is as follows:

1. Set the cuts in the domain D.
2. Compute a, b along the boundary of D, i.e.,

a(s) = a(d(s)) , b(s) = b(d(b)). (26)

3. For every inner point x on the triangulation, compute a(x) and b(x) by applying (11), (12).

More information is necessary for step 2. We compute all boundary switch points Weinkauf et al. [2004c] on the
boundary of D that divide the boundary in alternating areas of inflow and outflow, respectively. We consider outflow
areas only and compute a, b by applying (13)–(22). For inflow areas, the corresponding values a, b are computed by
applying (11), (12), respectively.

9 Results

We apply our approach to a number of test fields. Figure 9 shows a piecewise linear vector field with 3 swirling sources
and a saddle. Figure 9(right) shows a LIC image of the field as well as the cuts. Figure 9(left) shows the computed
piecewise linear field a as height field. Also the underlying triangulation for the piecewise linear fields are shown. The
projected lines in figure 9(left) show isolines of a that correspond to stream lines of v. Note that we can see a clear
discontinuity of a at the cuts, but no discontinuities are visible in the isolines, which is due to the gradient-preservation
property.

Figure 10 shows the approach for a vector field with 2 sources, 2 sinks and 2 saddles.

10 Conclusion

We presented a principal solution to represent 2D vector fields as scalar fields. Further research is necessary concerning
the comparison of accuracy of isoline extraction of a vs. a standard numerical stream line integration of v. Also, further
and more complex datas sets need to be evaluated.

An extension to 2D time-dependent as well as to 3D vector fields is non-trivial, but there is no fundamental reason that
prevents the extension. We leave this extension to future research.
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Figure 9: Vector field with 3 swirling sources and a saddle; 3d image of the constructed scalar field (left), LIC of the
vector field (right).

Figure 10: Vector field with 2 sources, 2 sinks and 2 saddles; 3d image of the constructed scalar field (left), LIC of the
vector field (right).
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