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Abstract
Measured data often incorporates some amount of uncertainty, which is generally modeled as a distribution of possible samples.
In this paper, we consider second-order symmetric tensors with uncertainty. In the 3D case, this means the tensor data consists of
6 coefficients – uncertainty, however, is encoded by 21 coefficients assuming a multivariate Gaussian distribution as model. The
high dimension makes the direct visualization of tensor data with uncertainty a difficult problem, which was until now unsolved.
The contribution of this paper consists in the design of glyphs for uncertain second-order symmetric tensors in 2D and 3D. The
construction consists of a standard glyph for the mean tensor that is augmented by a scalar field that represents uncertainty. We
show that this scalar field and therefore the displayed glyph encode the uncertainty comprehensively, i.e., there exists a bijective
map between the glyph and the parameters of the distribution. Our approach can extend several classes of existing glyphs for
symmetric tensors to additionally encode uncertainty and therefore provides a possible foundation for further uncertain tensor
glyph design. For demonstration, we choose the well-known superquadric glyphs, and we show that the uncertainty visualization
satisfies all their design constraints.

CCS Concepts
• Human-centered computing → Scientific visualization;

1. Introduction

Uncertainty visualization is one of the current challenges in Sci-
entific Visualization. Modern visual data analysis does not only
focus on properties, features, and correlations in the data but also
on their uncertainties. This additional consideration comes with a
significant increase of data to be processed and visualized: instead of
scalar/vector/tensor samples at domain points, either ensembles of
scalar/vector/tensor samples or distribution functions have to be pro-
cessed. The data considered here are 3D uncertain symmetric second
order tensor fields under the assumption of a normal distribution.
These fields are usually obtained from ensembles of tensor fields,
which consist of multiple measurements of a tensor per grid point.
Such an uncertain symmetric tensor is represented by a mean tensor
(consisting of 6 coefficients) and – after embedding the tensors into
a 6D vector space – by a 6×6 covariance matrix (consisting of 21
coefficients).

We present a generic approach to designing glyphs that represent
both simultaneously the 6 coefficients of the mean tensor and the
21 coefficients of the covariance matrix. The construction starts
from some established glyph representation for the mean tensor by
a closed glyph surface. We show that the information encoded in the
covariance matrix can be captured by a scalar field that lives on the
glyph surface. The scalar function encodes the local perturbation of
the glyph surface under applying a normal random perturbation to
the mean tensor, where the latter perturbation of the mean tensor is
modeled by the covariance matrix. We demonstrate this by visualiz-

ing the scalar field as an offset surface to the surface that represents
the mean glyph. This provides an understanding of the impact of
perturbations to the geometry of the mean glyph or equivalently its
likely shape variation under the given uncertainty distribution func-
tion. We show that our new glyph uniquely encodes the covariance
matrix if the chosen mean glyph is “complicated enough”, which is
the case, e.g., for the standard representation by superquadrics. In
addition, we can measure the “stability” of the mapping between
any uncertain glyph and the associated covariance matrix as a single
number. We apply the technique to three standard glyphs for the
mean tensor: an ellipsoid representation for positive definite tensors,
superquadric glyphs [Kin04,SK10], and the glyphs in [GRT17a] for
symmetric tensors. We show that the ellipsoid representation does
not give full coverage of the information encoded in the covariance
matrix whereas superquadric glyphs do. We provide examples and
experiments and apply our technique to ensembles of DT-MRI data
and mechanical stress tensors.

Notation

We use bold lowercase letters for vector quantities and bold capital
letters for matrices/tensors. We use the following standard nabla
operator notation for derivatives of scalar functions g(s) and vector
fields g(s) w.r.t. to a vector s = (s1, . . . ,sn):

∇sg =
∂g
∂s

=

(
∂g
∂s1

, . . . ,
∂g
∂sn

)T

and ∇sg =
∂g
∂s

=

(
∂g
∂s1

, . . . ,
∂g
∂sn

)T

.
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Further, we use the Mandel notation, which represents symmetric
tensors as vectors and define the operator v(·) that transforms a
symmetric second order (n× n) tensor S into a vector. We use
n = 2,3,6 which gives vectors of dimension 3,6,21, respectively, as

v(S) = (s11,s22,
√

2 s12)
T

v(S) = (s11,s22,s33,
√

2 s12,
√

2 s13,
√

2 s23)
T

v(S) = (s11, . . . ,s66,
√

2 s12, . . . ,
√

2 s16, . . . ,
√

2 s56)
T

where si j denote the tensor components. Note that v(·) describes an
isometric embedding of the tensor space into R3/6/21, i.e., scalar
products and hence distances are preserved. In particular, the follow-
ing holds:

rT S r = v(rrT)
T
v(S) (1)

for a symmetric second order tensor S and a vector r. Further, any
rotation R in domain coordinates acting on a tensor S corresponds
to a rotation R̂ acting on v(S) in the isomorphic vector space such
that

v(R S RT) = R̂ v(S) . (2)

For details on notation and properties see, e.g., [Hel94]. We use the
operator v(·) to describe the uncertainty of second order tensors
in terms of standard matrix and vector operations instead of non-
standard higher order tensor operations. This was done similarly
in [BP03, AWHS16].

2. The visualization problem

We assume an uncertain tensor under normal distribution that is
described by the distribution function

p(S) = 1√
(2π)n detC

exp{− 1
2v(S− S̄)T C−1 v(S− S̄)} . (3)

This function has two parameters: the mean tensor S̄ and the co-
variance matrix C, which describes not only the variance of the
individual coefficients of v(S) but also their linear dependencies.
So, we define an uncertain tensor as a pair (S̄,C). Note that C is a
symmetric positive definite matrix. In 2D, it is a 3×3 matrix with 6
distinct entries, while in 3D it is a 6×6 matrix with 21 entries.

Assuming a Gaussian distribution to describe uncertainty in tensor
data is common and widely accepted in the literature [BP03, BP07,
AWHS16]. We remark that alternative models exist and are used in
settings, where this assumption does not hold; for instance, [ZSL∗16,
ZCH∗17] use a modified mean tensor.

Given m tensor samples S1, . . .Sm, e.g., from an ensemble data
set with m members, the best-fitting uncertain tensor is given by

S̄ =
1
m

m

∑
i=1

Si and C =
1
m

m

∑
i=1

v(Si− S̄)v(Si− S̄)T
. (4)

We search for glyphs that encode both S̄ and C and satisfy a list
of properties. In order to express these properties we first need to
specify the terms scaled and rotated uncertain tensor. Assume that
the same rotation or scaling is applied to all tensor samples in (4).
Then scaling by a factor ρ > 0 gives the scaled uncertain tensor

(ρ S̄ , ρ
2 C), and rotation by R gives the rotated uncertain tensor

(RS̄RT , R̂CR̂T) with R̂). A construction of R̂ from R is given in
the Appendix.

A wish list for uncertain glyphs

Glyph design is a creative process. The one and only perfect glyph
usually does not exist. A common approach starts with the formula-
tion of desired and/or required properties to constrain the search to
conforming glyphs. Our “wish list” of properties is similar to [SK10]
and [GRT17a] and their work includes detailed justifications for their
importance. Let (S̄,C) be an uncertain tensor and G(S̄,C) its glyph
representation.

1. Rotation invariance: G(RS̄RT, R̂CR̂T) = RG(S̄,C) for any
rotation matrices R and R̂ as in (19).

2. Scaling invariance: G(ρ S̄, ρ
2 C) = ρG(S̄,C) for a positive scal-

ing factor ρ.
3. Continuity: Small changes in tensor or covariance matrix should

result in small changes in the glyph:
(S̄1,C1)≈ (S̄2,C2)⇒ G(S̄1,C1)≈ G(S̄2,C2).

4. Uniqueness: The glyph should contain information to uniquely
reconstruct the uncertain tensor: no two different tensors should
have the same glyph representation:
(S̄1,C1) 6= (S̄2,C2)⇒ G(S̄1,C1) 6= G(S̄2,C2).

5. Direct encoding of real eigenvectors/eigenvalues of S̄: Since the
eigenvectors/eigenvalues of S̄ have a well-defined meaning in
most applications, they should be directly encoded in G.

6. Convergence for C→ 0: For vanishing uncertainty, G should
converge to a well-defined glyph encoding all information of S̄.

7. Intuitiveness: The glyph should be easily readable and should
have an intuitive interpretation.

Properties (1.–5.) are direct generalizations of standard glyph prop-
erties for the certain case, as formulated in [SK10] and [GRT17a].
Property (6.) requires that the certain case should be a well-defined
special case in all uncertain tensor glyphs. Property (7.) is the only
one that cannot be shown by a mathematical proof, due to the lack
of a mathematical definition of the concept of intuitiveness. The
main contribution of this paper is to prove that our glyphs fulfill
the properties (1.–6.). We should search for intuitive glyphs in the
subspace of all possible glyphs given by properties (1.–6.).

3. Related Work

This work extends current glyph-based visualization techniques for
second-order tensors by additionally encoding uncertainty. Both,
tensor visualization as well as uncertainty visualization, form their
own fields of research with many contributions over the last years.
This section summarizes a selection of contributions.

3.1. Tensor Glyphs

Second-order tensors are used in a large variety of applications, i.e.,
for modeling stress, diffusion or fluid flow. Glyphs have been proven
to be a powerful visualization tool for such data. Every tensor can
be decomposed into a unique set of eigenvectors and eigenvalues,
which enable the mapping of tensor invariants to geometric prop-
erties like size, shape, orientation or color. Kindlmann introduced
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superquadrics as glyphs [Kin04] as an intuitive visualization tool
for diffusion tensors. Such tensors are symmetric, i.e., their eigen-
vectors are orthogonal, and positive-definite, i.e., their eigenvalues
are positive. Schultz extended this work for indefinite symmetric
tensors [SK10]. Both works give an extensive overview of further
techniques for visualizing symmetric second-order tensors.

Vector field Jacobians provide an example of tensor fields that
are generally non-symmetric. This means eigenvectors are gener-
ally non-orthogonal, and eigenvalues/eigenvectors may be non-real.
Seltzer et al. [SK16] introduce glyphs for asymmetric second-order
2D tensors, where texture is used to encode rotational behavior.
Gerrits et al. [GRT17a] introduce a different glyph construction
technique for general second-order tensors in 2D and 3D that is
based on strict visualization principles, similar to our wish list given
in Section 2. This work was extended to glyphs that represent time-
dependent vector field Jacobians by finding a suitable mapping of
the time-derivative into the visualization space [GRT17b].

3.2. Uncertainty Visualization

Uncertainty in data describes how reliable or useful these data are.
Modeling and considering uncertainty is critical in many appli-
cations including medical imaging or optimization and decision
making based on mechanical simulations or computational fluid
dynamics. Its visualization is a key to understanding (sources of)
uncertainty and to properly define policies in the presence of uncer-
tainty. Visualizing uncertainty is generally a challenging task, as it
adds another dimension to the visualization space. There exists a
multitude of approaches to uncertainty visualization, see, e.g., the
reviews by Bonneau et al. [BHJ∗14] and Brodlie et al. [BOL12].

3.3. Uncertain Tensors

This work aims at visualizing uncertainty in tensor data. A notorious
example for such data are diffusion tensors, which are obtained,
e.g., from diffusion tensor magnetic resonance imaging (DT-MRI).
Uncertainty typically stems from the measurement process, which
introduces a significant amount of Gaussian noise [BP03]. An alter-
native source of uncertainty is fusion of tensors from members of
an ensemble.

Several approaches deal with visualizing the uncertainty in tensor
fields by considering not the whole tensor and its uncertainty but
only derived scalar and vector invariants. Jones introduced the cones
of uncertainty [Jon03] to encode the local variance of eigenvector
estimates. This provides a confidence visualization, but fails to show
distributions as unique glyphs. Schultz et al. [SSSSW13] provide
a new glyph that aims at a more detailed understanding of the
distribution of fiber variability from DT-MRI. The construction is
based on decomposing the probability measure into a main direction
and a residual, combining both into what they call the HiFiVE glyph.

Jiao et al. [JPGJ12] compute what they call SIP glyphs from
orientation distribution functions and volume rendering of a large
number of samples from the distribution. The volume data that re-
sults from superimposing these renderings can visualize the shape
inclusion probability (SIP, see [LP09]) gives one possible geometric
interpretation of uncertainty. This approach is related to ours be-
cause it is driven by geometry and even some of their glyphs may

appear similar to ours. However, its is also very different: Firstly, it
lacks of (provable) adherence to design principles summarized in
the previous section, e.g., directions of eigenvectors or magnitude of
eigenvalues of the mean tensor may not be directly visualized. Sec-
ondly, the glyph encodes the uncertainty in a 3D scalar field, while
our approach encodes the uncertainty in a 2D scalar field on the
glyph surface. Finally, its glyph computation is based on generating
a large number of random samples, which are “fused” to a glyph
representation. In contrast, our approach constructs a well-defined
shape as a parametric or implicit function.

Basser et al. [BP03, BP07] suggest two visualizations: First, they
propose visualizing the covariance matrix independently of the mean
tensor. While this provides a useful representation of the covariance
itself, it raises a number of problems. Firstly, the same covariance
matrix shows different impact on different mean tensors. Secondly,
only a subset of the full covariance matrix is visualized. Thirdly, this
visualization is not invariant under rotation of the coordinate system
or tensors, respectively. Their second visualization proposes show-
ing the mean tensor and its variance as three isosurfaces representing
mean and standard deviation. Even though, this is a first approach
to visualizing the impact of the covariance matrix on the mean
tensor, only the totally symmetric part of the covariance is used,
resulting in a violation of property (4.). These shortcomings are
discussed in [AWHS16]. Based on these observations, Abbasloo et
al. [AWHS16] provide another solution: The main idea is to consider
a spectral analysis and to visualize the tensor perturbations in the
directions of the 6 eigenvectors of the covariance matrix. Then the
whole covariance matrix is covered by a simultaneous observation
of 6 tensor deformations. While this gives a complete picture of the
uncertain tensor, it does not satisfy the continuity property (3.): if
two eigenvalues of the covariance tensor get close to each other, the
corresponding eigenvectors (and therefore the 6 visualizations) may
show discontinuities. In a similar approach for ensembles of tensor
data, Zhang et al. [ZCH∗17] provide a framework to combine sev-
eral visualizations to gain a general overview of the whole ensemble,
as well as a detailed information of distinct tensor properties. They
divide uncertainty in three independent parts (scaling, shape and
rotation) and encode each with one variance number. This way, the
glyphs they propose encode only a 3-dimensional subspace of the
complete 21-dimensional space spanned by an uncertain tensor.

The following table compares existing work on uncertain symmet-
ric tensor glyphs with respect to the design properties (1.–6.). The
additional last column (±) indicates, whether the glyph visualiza-
tion distinguishes between indefinite and definite general symmetric
second-order tensors. Properties that could not be decided are indi-
cated as "?".

method / satisfies (1.) (2.) (3.) (4.) (5.) (6.) ±
[Jon03] 3 3 7 7 ? ? 7

[BP07] 3 3 3 3 7 3 7

[JPGJ12] 3 3 3 7 ? 3 7

[SSSSW13] 3 3 7 7 ? ? 7

[AWHS16] 3 3 7 3 7 3 3

[ZCH∗17] 3 3 7 7 3 3 7

Ours: ellipsoid 3 3 3 7 3 3 7

Ours: superquadric 3 3 3 3 3 3 3

Ours: [GRT17a] 3 3 3 3 3 3 3
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We conclude this review of related work with the statement that –
to the best of our knowledge – no glyph for uncertain tensors exists
that fulfills properties (1.–6.). Moreover, [AWHS16] even state that
due to the high data complexity, “it does not seem promising to try
and visualize all aspects of tensor covariance simultaneously”. We
disagree with this statement and propose a solution to this visualiza-
tion problem in the following.

4. Glyphs for Uncertain Symmetric Tensors

We propose a generic approach that extends any glyph definition
for a “certain” tensor S to the uncertain case to provide a glyph
for (S̄,C). A variety of glyph definitions exist for the certain case.
These glyphs are often described as closed surfaces (or curves in
2D), sometimes with additional color information. A glyph surface
is either given in implicit form

g(S,x) = 0 (5)

or in parametric form

g(S,θ,φ) , (6)

with surface parametrization (θ,φ). For the uncertain case, we rep-
resent the mean tensor by a standard glyph surface. In addition, we
define a non-negative scalar field q on the glyph surface that encodes
the impact of the covariance C on S̄. We write q short for q(S,x)
(for g(S,x) = 0) and q(S,θ,φ), likewise, and define

q =
√

qT Cq (7)

with

q = q(S,x) = ∇s g
||∇x g|| (8)

for the implicit case and

q = q(S,θ,φ) = (∇s g)n (9)

for the parametric case with s = v(S), and n = 1
||·||

(
∂g
∂θ
× ∂g

∂φ

)
is

the surface normal. Note that for the implicit case,∇s g is a 3-vector
in 2D and a 6-vector in 3D. For the parametric case,∇sg is a 3×2
matrix in 2D and a 6×3 matrix in 3D.

Derivation and Explanation

In order to explain the idea of the field q, we consider the concept
of normal velocity of a time-dependent surface. Assume a time-
dependent surface either in an implicit representation g(x, t) = 0 or
in a parametric representation g(θ,φ, t). The surface changes shape
and location under variation of the time parameter t. The normal
velocity of the surface describes the change of the surface in the
direction of the surface normal as

r =− gt

||∇x g|| (10)

for the implicit case and with gt =
∂g
∂t for the implicit case and

r =
∂g
∂t

T
n = gt

Tn (11)

with gt =
∂g
∂t for the parametric case. Figure 1 gives an illustration.

Figure 1: The normal velocity r of a time-dependent surface.

Returning to tensors, we observe how a glyph surface behaves
under a perturbation

S→ S+ t D (12)

to the tensor for a small t. We want to observe the directional deriva-
tive of v(S) in the direction v(D). We do so by considering the
time-dependent surfaces

g(v(S)+ t v(D),x) = 0 and g(v(S)+ t v(D),θ,φ) .

Computing their normal velocity for t = 0 gives

r(S,D,x) =−v(D)Tq (13)

with q as defined in (8) for the implicit case and

r(S,D,θ,φ) = v(D)Tq (14)

with q as defined in (9) for the parametric case.

Equations (13) and (14) describe the normal velocity of the glyph
surface under a particular perturbation D. In order to consider the
behavior of the glyph surface under all possible perturbations, we
consider r2 as

r2 = qTv(D)v(D)T q, (15)

and replace v(D)v(D)T by the covariance matrix C. This gives
q =
√

r2 as defined in (7). So the field q describes the mean abso-
lute values of the normal velocities of an arbitrary glyph surface
perturbation D with the distribution of D given by C.

Computation and Visualization

Although the computation of q by (7)–(9) is conceptually simple,
the concrete implementation becomes involved for glyph represen-
tations that require a spectral decomposition of the tensor: In this
case, the derivatives of the decomposition with respect to the glyph
components need to be computed, which is difficult and generally
unpractical in closed-from. However, the algorithmic computation
of q is indeed simple if derivatives are approximated numerically by
finite differences. This is what we use in our implementation. One
potential pitfall remains: Care has to be taken when different para-
metric representations exist for the same tensor (i.e.the superquadric
glyphs). In this case we have to ensure that the same parametrization
is used for all samples required for estimating a derivative.

For visualization, we render two closed surfaces: the mean glyph
surface G, and a surface Q defined as Q = G+ qn where n is the
surface normal on G. This means that Q is a scaled offset surface of
G where q dictates the normal distance between G and Q. The joint
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visualization of the two nested surfaces G and Q is a standard prob-
lem for visualization. Here, we apply a straightforward rendering
using semi-transparency.

A special case that should be considered consists in a mean glyph
surface G that is C0 continuous at certain locations, i.e., sharp edges
or corners. These locations result in a locally discontinuous Q, i.e., a
surface with boundaries at “jumps”. This can happen at single points
as well as along a closed line. We close such boundary loops with
ruled surfaces to maintain a closed surface. At singularities, where
different values can be mapped to the same point, we chose to set
the offset to zero.

5. Analysis

In this section we show that the proposed glyphs fulfill properties
(1.-7). Properties (1.,2.,3.,5). are generic properties. If they are ful-
filled by the underlying glyph for the mean tensor, equations (7)–(9)
ensure that they carry over directly to the glyph for the uncertain
tensor. Property (6.) is simple: (7) gives that for C→ 0, we get
q→ 0 and therefore convergence to the “certain” glyph .

Properties (4., uniqueness), and (7., intuitiveness) are harder to
show. Uniqueness is not generic: different choices of glyphs for
mean tensor result in different statements about uniqueness.

5.1. Uniqueness

To prove or counter-prove the uniqueness of a glyph for an uncer-
tain tensor (S̄,C), we assume that the mean tensor S̄ is uniquely
represented by the glyph surface itself. It remains to show that all 21
coefficients of C can be uniquely derived from the scalar field q on
the glyph surface. In fact, to show uniqueness, we have to show that
there exist 21 sample points g1, . . . ,g21 on the glyph surface such
that the corresponding samples q1, . . . ,q21 of the field q(g) enables
a unique reconstruction of the covariance matrix C. Let q1, . . . ,q21
denote the corresponding samples of the vector field q given in (7)
such that q2

i = qT
i Cqi. Then (1) and (7) give

(q2
1, . . . ,q

2
21)

T
= MTv(C) (16)

with

M =
(
v(q1qT

1 ), . . . ,v(q21qT
21)
)
∈ R21×21. (17)

In order to show that v(C) can be computed from (q2
1, . . . ,q

2
21)

T

(and vice versa), we have to show that M has full rank for the
chosen sample points.

Equations (16) and (17) show that the uniqueness of a glyph
depends on the behavior of q on the glyph surface. LetQ be the set
of all vectors q on the glyph surface. A characterization ofQ is the
key to study uniqueness.

Lemma 1. An uncertain glyph is not unique iff all q ∈ Q live on
a common quadric,i.e., there exists a non-zero matrix A such that
qTAq = 0 for all q ∈Q.

In order to prove the lemma we first show that a glyph is not
unique if such matrix exists. Assume that there exists a non-zero
matrix A that fulfills qTAq = 0 for all q∈Q. Then for any selection

of sample points g1, . . . ,g21 we have qT
i Aqi = 0 for i = 1, . . . ,21.

Writing this in matrix form using (1) gives

MT v(A) = 021 (18)

with M as in (17). Since v(A) is non-zero, (18) can only hold if
MT has a zero eigenvalue with the corresponding eigenvector v(A).
Therefore, M has a rank deficit for any selection of sample points,
there is no unique solution to (16), and therefore the uncertain glyph
is not unique.

For the reverse direction, we assume that an uncertain glyph is
not unique, i.e., we have chosen sample points g1, . . . ,g21 such that
the matrix M is singular. Then there exists a (non-zero) eigenvector
v(E) that corresponds to a zero eigenvalue, i.e., MTv(E) = 021. Due
to (1) and the definition of M (17), the latter condition is equivalent
to

v(qiqi
T)

T
v(E) = qi

TEqi = 0 for i = 1, . . . ,21 ,

which implies that the samples live on the common quadric defined
by E.

With help of lemma 1, we can now analyze particular uncertain
tensor glyphs:

Theorem 1. Uncertain ellipsoid glyphs for positive definite tensors
are not unique.

We summarize the proof of theorem 1 for uncertain tensors in 2D.
The general construction is identical for the 3D case, however, the
generated expressions are significantly more complex.

Given is an uncertain tensor (S̄,C) with v(S̄) = s. The surface
of the ellipsoid glyph of the mean tensor is given as implicit sur-
face g(S̄,x) = 0 with g(S̄,x) = xTS̄−2x− 1 or equivalently as the
image {Sx |xTx = 1}. We want to show that for this choice of g
there exists an A 6= 0 such that qTAq = 0, which is equivalent to
(∇sg)TA∇sg = 0 after dropping the normalization. Let x = (x1,x2)

with ||x||2 = x2
1 + x2

2 = 1. Then the evaluation of the gradient at a
surface point gives

∇sg(S̄,Sx) =
2

2s11s22− s2
12

 (2s22x1−
√

2s12x2)x1
(
√

2s12x1−2s11x2)x2
s12−

√
2(s11 + s22)x1x2

 ,

and for the further consideration we can drop the factor that is
constant in x. The remaining expression

q̃ := (s11s22− 1
2 s2

12) ·∇sg(S̄,Sx)

is linear in s, and we can write

q̃ = Br :=

2s22 0 −
√

2s12
0 −2s11

√
2s12

s12 s12 −
√

2(s11 + s22)

 x2
1

x2
2

x1x2

 .

We will now show that the glyph is not unique by lemma 1 and use
the fact that the above matrix B has full rank and is invertible.

We have q2 = ϕ q̃Tq̃ for some factor ϕ 6= 0 that is constant in x,
i.e., independent of the chosen surface point. Consider the vector r
and find a matrix T 6= 0 such that rTTr = 0. In this case there are

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



T. Gerrits, C. Rössl, and H. Theisel / Towards Glyphs for Uncertain Symmetric Second-Order Tensors

three distinct choices up to scaling, e.g.,

T =

 0 1
2 0

1
2 0 0
0 0 −1

 .

We use that B is invertible in order to construct A = B−TTB−1,
which is similar to T, and for which ϕ

−1qTAq = q̃TATq̃ =
rTB−TTB−1r = rTTr = 0 for all r and therefore also for all
||x||= 1 and all surface points Sx, respectively. With lemma 1 this
proves the theorem.

Theorem 2. Uncertain superquadric glyphs for positive definite
tensors are unique if all eigenvalues of the mean tensor are nonzero
and distinct.

We sketch a proof of this theorem for the 2D case in the Appendix.
The basic idea of the proof is simple: find 6 samples of points on
the glyph surface such that the matrix M (17) has full rank. The
difficulty of the proof consists in the fact that the construction of
superquadrics involves a change of coordinates using the spectral
basis of the mean tensor S̄, i.e., it is parametrized by eigenvalues
and eigenvectors, whereas partial derivatives must be computed w.r.t.
the entries v(S̄).

Quantifying uniqueness

As mentioned above, a formal proof that a new uncertain glyph is
unique can be difficult. The reason is that many glyph definitions –
like the superquadric glyphs – rely on the spectral decomposition
of the tensor. This makes finding a formal proof seemingly the
hardest task when establishing a new glyph for uncertain tensors –
significantly harder than the definition and implementation.

To cope with this, we introduce a measure of the “uniqueness” of
an uncertain glyph: we measure how stably the covariance matrix
C can be reconstructed from m samples (m≥ 21) q1, . . . ,qm of the
function q at the sample points g1, . . . ,gm on the glyph surface G. In
the ideal case, a small perturbation in C results in small changes in
q1, ..,qm, and vice versa. The reconstruction of q from C is defined
by the linear mapping (16) if m = 21. For m > 21 samples, the map
is given by the corresponding least-squares solution to

MMT v(C) = M(q2
1, . . . ,q

2
m)

T
.

The condition number κ = κ(M) measures the stability of this map
(for any m ≥ 21). The condition number is defined as the ratio of
largest and smallest singular values of M. This implies κ≥ 1 and
κ→∞ if M does not have full rank (i.e., MMT is not invertible).
Numerical applications commonly prefer specification of the recip-
rocal condition number in order to have values in a finite interval.
For the same reason we define the uniqueness number as

u(G) = κ(M)−1 ∈ [0,1] ,

which has the following properties:

• u(G) depends only on the shape of the mean glyph. It is a measure
how well an arbitrary covariance matrix C can be reconstructed
from sampling q on the mean glyph surface.
• u(G) is invariant under rotation and scaling.
• 0≤ u(G)≤ 1. The larger u(G), the better C can be reconstructed

from sampling q.

• u(G) = 0 indicates that the glyph is not unique.

The uniqueness number depends on the number m≥ 21 of samples
as well as on the sampling positions gi. Ideally we would like to
compute

inf{u(G) | given any possible sampling of G} ,

which is infeasible. However, any computed u(G) > ε provides
evidence of uniqueness for a suitable ε→ 0, and any maximum of
computed values (e.g., for different samplings) gives an conservative
estimate or a lower bound on uniqueness.

We illustrate these properties and the behavior of u(G) in few nu-
merical experiments: We start with 21 uniformly distributed random
samples on the glyph surface and compute the uniqueness number.
We observe that the particular sampling is generally not critical: the
computed values of u typically do not vary much. As the uniqueness
number depends on the selection of the sample points, one might
be tempted to construct a “smart selection” or use “deterministic
samples”. We decided to use random samples because deterministic
sampling would incorporate the orientation of the eigenvectors of
S̄. This changes discontinuously in regions of equal eigenvalues,
which leads to a violation of the continuity condition (3.) for glyph
design. By incorporating additional samples, the number of rows
in M typically increases, as this typically “adds” new information,
and the condition number of M tends to decrease. This means the
uniqueness number typically increases. The more samples, the less
likely are additional samples to capture new information. Therefore
uniqueness changes at a slower and slower rate and is expected to
converge to a limit. This is illustrated in Figure 2a for the same mean
tensor and two different glyph constructions. With a minimum at
21 values, u(G) rises rapidly after including about 150 additional
samples and remains stable from thereon.

Since u(G) is independent of rotation and scaling, we can system-
atically compute u(G) for all glyphs of a certain glyph type. For this,
we consider the three eigenvalues of the mean glyph λ1,2,3 as λ1 = 1,
λ2,3 ∈ [−1,1] and compute u(G) for each (λ2,λ3) ∈ [−1,1]2. The
resulting plot for the glyphs in [GRT17a] is shown in Figure 2b. It
shows that u(G) > 0 if λ1,2,3 are distinct and nonzero. Hence Fig-
ure 2b shows the uniqueness of the uncertain 3D glyphs of [GRT17a].
The height surface in Figure 2b was computed on a 151×151 sam-
pling grid.

An uncertain glyph is considered to be unique for u(G)> ε such
that it is numerically clearly distinguishable from 0. In practice,
we expect a significantly lower uniqueness for a close to minimal
sampling (m = 21) than for higher m (see Figure 2a). However, even
such cases correspond to condition numbers in the range of 105,
which is perfectly tolerable for solving a linear system.

5.2. Intuitiveness

It remains to show that the field q on the mean glyph surface provides
an intuitive encoding of uncertainty. This cannot be proven formally.
Instead we motivate and explain intuition with help of few exemplary
settings in 2D.

Figure 3 shows different visualizations of an ensemble of 2D
tensors, which follow a given normal distribution. A 2D tensor can
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Figure 2: (a) For an increasing number of samples on G, uniqueness
u increases. The experiment shows random samples on the tensor
v(S̄) = (1,0.5,0.4,0,0,0)T. For both choices of Q we observe a
converging behavior of u. (b) Uniqueness u(G) for different mean
tensors using [GRT17a]. λ1 = 1 is fixed, and λ2,λ3 ∈ [−1,1] vary.
The tensor is unique, if u(G) 6= 0.

be considered as a point in the 3-dimensional vector space of the
tensor components s11,s22,

√
2s12. Figure 3 (left) shows the tensors

as 3D points. The red point denotes the mean tensor, and the over-
laid ellipsoid denotes the covariance. Figure 3 (center) shows the
same set of tensors by overlaying their corresponding transparent
superquadric glyph surface (here: superellipses in 2D). We see that
there are regions where many curves coincide, whereas in other re-
gions there is a larger spread. Figure 3 (right) shows the same tensor
ensemble with our visualization: the orange curve is a superquadric
representation of the mean tensor, the field q is shown as the region
bounded by offset curves in positive and negative normal directions.
The relation to Figure 3 (center) is visually noticeable: In regions of
high spread among the sampled glyph curves, the offset q is rather
large. Figure 3 also shows that our glyph shows similarities with
curve boxplots [MWK14], even though definition and properties are
different.

To further study the meaning of the field q, we conduct the fol-
lowing experiment: We generate 5 samples of 2D tensors by varying
properties in the spectral domain. Then we compute the best-fitting
uncertain tensor by applying (4) and visualize its glyph. The top
row of Figure 4 shows several collections of 5 tensors as overlaid su-
perquadric glyphs. In the columns we vary (from left to right) 1. one
eigenvalue (same signs), 2. one eigenvalue (opposite signs), 3. both
eigenvalues (same sign) with inverse correlation, 4. both eigenvalues
(opposite signs) with positive correlation of the magnitudes. The
eigenvectors remain constant. The bottom row in Figure 4 shows the
corresponding uncertain glyphs. The relation between the overlaid
superquadric glyphs and our uncertain superquadric glyphs is clearly
noticeable.

In Figure 5 we conduct the same experiment with constant eigen-
values and varying direction of eigenvectors. The amount of vari-
ation decreases from left to the right. The top row shows overlaid
superquadrics, and the bottom row shows the corresponding uncer-
tain glyphs. As before, the relation between the overlaid samples
and the fitted distributions shown as uncertain glyphs is clearly
noticeable.

We conduct similar experiments for 3D glyphs. Here, we compare
different classes of glyphs that are extended to visualize uncertain
tensors: simple ellipsoid glyphs (for positive-definite tensors), su-

Figure 3: Three visualizations of the same 2D tensor ensemble: as
points in the vector space of tensor components s = v(S), the red
point denotes the mean tensor S̄ (left); as overlaid superquadric
glyph curves (center); as uncertain glyph: mean G(S̄) is depicted
as orange curve, the filled region is bounded by the outward/inward
offset curves defined by q (right).

Figure 4: Four different sets of tensor samples. Each set consists
of 5 tensors that are generated by varying the eigenvalues (with
constant eigenvectors). The top row shows overlaid superquadric
glyphs. The bottom row shows our corresponding uncertain glyphs.

Figure 5: Five different sets of tensor samples. Each set consists
of 5 tensors that are generated by varying the direction of eigen-
vectors (with constant eigenvalues). The top row shows overlaid
superquadric glyphs. The bottom row shows our corresponding
uncertain glyphs.

Figure 6: Glyphs for uncertain tensor with v(S̄) =

(1,0.8,0.5,0,0,0)T, C = diag(0,0,0.2,0,0,0). The ten-
sor varies in one principal direction. From left: ellipsoid
glyph with u(G) = 0, superquadric glyph with u(G) ≈ 9.1 · 10−4,
glyph by [GRT17a] with u(G)≈ 1 ·10−4.

perquadric glyphs [SK10] and the glyphs presented by Gerrits et
al. [GRT17a] (for the case of symmetric tensors). Figures 6 and 8

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



T. Gerrits, C. Rössl, and H. Theisel / Towards Glyphs for Uncertain Symmetric Second-Order Tensors

Figure 7: Glyphs for uncertain tensor with v(S̄) =

(0.9,0.7,0.3,0,0,0)T and covariance that corresponds to
varying plane rotation of eigenvectors. From left: ellipsoid
glyph with u(G) = 0, superquadric glyph with u(G) ≈ 3.4 · 10−4,
glyph by [GRT17a] with u(G)≈ 2 ·10−6.

Figure 8: Glyphs for uncertain tensor with indefinite mean
v(S̄) = (1,0.6,−0.5,0,0,0)T and C = diag(0,0.65,0.03,0,0,0).
The tensor varies in one principal direction. Left: su-
perquadric glyph with u(G) ≈ 1.5 · 10−4. Right: glyph
by [GRT17a] with u(G) ≈ 3 · 10−6. (There exists no ellipsoid
glyphs in the indefinite case.)

Figure 9: Glyphs for uncertain tensor with

S̄ =
( 1 0.2 0.1

0.2 0.4 0.03
0.1 0.03 0.2

)
and C = 10−3 ·

103 69 69 0 0 0
69 66 36 0 0 0
69 36 66 0 0 0
0 0 0 300 0 0
0 0 0 0 6 0
0 0 0 0 0 200

.

From left: ellipsoid glyph with u(G) = 0, superquadric
glyph with u(G) ≈ 3.6 · 10−4, glyph by [GRT17a] with u(G) ≈
5.3 ·10−6.

show glyphs for ensembles with one varying eigenvalue, whereas
Figure 7 shows glyphs for tensors that are varied by a plane rotation
of eigenvectors. Figure 9 visualizes a randomly chosen uncertain
tensor (S̄,C). For each glyph we provide a uniqueness number u(G)
that was computed from a sampling at 21 random points on the
glyph surface. We emphasize again, that this is no formal prove of
intuitiveness but aims towards giving new insights into visualization
of tensor uncertainty.

6. Results

We demonstrate how our new uncertainty glyph can be used as a
tool for investigating uncertainty in tensor data by applying it to
data from medical imaging as well as mechanical engineering. First,
we apply our new tensor visualization to an ensemble of positive-
definite symmetric diffusion tensor data given in the DTI multiple
atlas set. The Human Brain Atlas was provided by the Johns Hop-

kins Medical Institute and the Laboratory of Brain Anatomical MRI.
A horizontal slice is sampled for fourteen distinct members and a
non-linear registration is applied on a rectangular grid as seen in
Figure 10a. The measured tensors vary in magnitude and direction.
We compute the mean tensor and covariance matrix for each sample
location. Figures 10b to 10d show the superquadric tensor glyph
visualization and the offset surface that indicates uncertainty. The
produced glyphs allow to see the mean tensor throughout the ensem-
ble members for all locations as well as the local uncertainty. Large
offset surfaces indicate stronger variations among the members and
provide a geometric insight of this variation. Glyphs shown at the
bottom of Figure 10c encode a high uncertainty and show, that ten-
sors vary in rotation. Especially tensor data measured close to the
lateral ventricles show uncertainty.

Figure 11 shows one selected tensor of the same dataset.
To illustrate the effect of uncertainty and its correspondence
to derived uncertainty measures, we construct a traceless ma-
trix C′ = C− diag(trace(C)) and use it as covariance matrix.
The top row shows a blending αC′ with the zero matrix for
α ∈ {0, 1

4 ,
1
2 ,

3
4 ,1}. This increases uncertainty which is shown by

the growing offsets. This offset is close to zero near the glyph axes
that represent eigenvector directions. Note that visualizing only the
trace of the covariance, which is often used as a derived uncertainty
measure, would give the impression that all tensors are equal and
certain. For the second row, we blend C′ and the original covariance
C stepwise from left to right as (1−α)C′+αC, which results only
in a change of trace. This leads to an overall increase of the offset,
also close to the axes. The overall volume of the surface allows
for a quick understanding of the level of uncertainty, the glyphs
however, also includes spatial information and indicates the type of
uncertainty.

We further show the visualization of a stress tensor ensemble from
static simulations of stresses applied to a steel cylinder. For the simu-
lation, the bottom end geometry is fixed and rotational momentum is
applied to each axis of the top end. While a mean rotation is applied
to the longitudinal axis, three different additional torques are applied
and varied for each simulation following a Gaussian distribution
to form an ensemble of 10 different tensor fields where tensors are
indefinite symmetric stress tensors. Again, a slice orthogonal to the
mean rotation axis is sampled on a uniform grid to compute mean
tensor and covariance matrix for each location and then visualized
by applying our technique to the superquadric tensor glyph. The
resulting image in Figure 12 clearly shows the rotational axis in
the center of the slice, where the tensor vanishes. For most glyphs,
the offset surface is close to the mean glyph surface, indicating a
low uncertainty for the location. Only tensors at the left and right
border show a stronger uncertainty, where eigenvalues vary while
eigenvectors are stable.

Parameter discussion

While the scalar field q defined on the glyph surface is parameter
free, its visual representation is not. A global scaling parameter of
the glyph itself has been used to have the sampled tensors densely
cover the area. Further, scaling the offset from the mean surfaces
is possible to emphasize uncertainty but has not been used in this
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(a) (b) (c) (d)

Figure 10: Uncertain superquadric glyphs for an ensemble of Diffusion Tensor Imaging data of the human brain.

Figure 11: Top: Linear blending of zero matrix and traceless matrix.
Bottom: Linear blending of traceless matrix and original covariance
matrix.

Figure 12: Uncertain superquadric glyphs for an ensemble of simu-
lated stress tensors from changing torque applied to a steel cylinder.
The colors indicate the signs of eigenvalues, the transparent offset
surfaces indicate uncertainty.

work. As the offset surface is encasing the mean tensor, we chose
opacity to solve the problem of overlapping. A suitable rendering
needs to be applied such that shape and color of both, offset as
well as mean surface can be perceived well. Other techniques for
visualizing scalar fields on a surface might be applicable, as long as
they do not lead to a violation of our wish list described in 2. Further
parameters are related to sampling: When using finite differences
to approximate derivatives, the step size between discrete points
affects the accuracy. As described in 5.1, determining an uniqueness
measure relies on sampling the glyph surface. For determining the
uniqueness of the uncertain glyphs shown in Figures 6 to 9 we

chose the minimum sample number of 21. Values in Figure 2b are
computed for a selection of 600 samples to ensure the value is close
to the tensors experimental limit.

Comparison to existing glyphs

To give a better understanding of how our contribution improves
glyph visualization of uncertain tenors, we compare them with
existing glyph techniques. As different mean tensors are affected
differently by the same covariance, we compare our uncertain
tensor glyphs to visualizations by [BP07] and [AWHS16]. As
mentioned in Section 3, Basser et al. use a radial projection of mean
and covariance tensors. Isosurfaces indicate mean tensor as well
as standard deviation. Besides the visual complexity produced by
three superimposed surfaces, the glyph construction cannot ensure
unique representations. Due to the projection, mean tensors that
only differ by the sign of eigenvalues will be mapped to the same
scalar field. The same can be shown for the covariance, as only the
totally symmetric part of the tensor is represented. Both mappings
are not bijective. The bottom row of Figure 13 demonstrates this
behavior: The surfaces for the mean tensor (shown in green) and
standard deviation ±σstd (−σstd red, +σstd blue) are superimposed
and rendered translucent. Columns (a) and (b) show glyphs for the
same mean tensor v(S̄) = (1,2,5,0,0,0)T but different matrices
as covariance tensors. While the first matrix can be written as
C1 = diag(0,0,0,1,2,3), the second places the same non-zero
values on different off-diagonal locations. The exact matrices can
be found in the Appendix. Columns (a) and (c) show glyphs for the
same covariance matrix but different mean tensors, as the sign of the
minor eigenvalue is flipped such that v(S̄) = (−1,2,5,0,0,0)T. The
three resulting glyph visualization by [BP07] are identical, which
is a violation of property (4.). In comparison, the top row shows
our new glyphs for the same input tensors. They are clearly dis-
tinguishable and are capable to represent each combination uniquely.

Abbasloo et al. [AWHS16] visualize the impact on the mean tensor
by decomposing the covariance into its eigentensors and rendering
the effect of each eigenmode separately. They offer an animation
to show how the mean tensor changes based on the different eigen-
modes. Alternatively, these glyphs can be presented as overlays, to
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(a) (b) (c)

Figure 13: Three different uncertain tensors visualized by our
method (top row) and [BP07] (bottom row). While our method
clearly shows different glyphs, the glyphs by [BP07] are identi-
cal: [BP07] is not unique.

indicate confidence intervals of tensor distributions. The authors
propose to add and subtract the eigentensor scaled by three times
the corresponding eigenvalue to the mean tensor and render two
superimposed superquadric glyphs. As the original mean tensor and
thus its eigenvector directions are no longer visualized, this poses as
a violation to property (5.). Eigentensors do, however, change in a
discontinuous way when the covariance tensor is nearly isotropic,
which leads to a sudden change in visualization even though the
covariance tensors are virtually identical. This sudden change can
be observed in Figure 14. Both (b) and (d) show visualizations for
the same mean tensor v(S̄) = (1,2,5,0,0,0)T. The six eigenvalues
σi and eigentensors Ei extracted from the fourth-order covariance
tensor are used to create six views. Each showing superquadric
glyph representations for Dblue = S̄−3σiEi and Dred = S̄+3σiEi

and labeled as eigenmode i. Note, that we used a simple translucent
rendering of both glyphs, while [AWHS16] render both separately,
adding a white core to areas where they overlap. For both covari-
ance tensors used in (b) and (d), we use C = 0.3 · I and add random
symmetric noise in the order of 10−8. This slight noise leads to a
sudden change in the eigentensors and therefore in the visualizations,
which is a violation of the continuity property (3.). Our new glyph
construction accounts for this problem. Uncertain tensor glyphs for
the given tensors are shown in (a) and (c). The minimal change
between both covariances results in a minimal change between both
uncertain glyphs.

7. Future Research

Our approach opens future research in several directions:

Rendering. We distinguish surfaces G of the base glyph and the
offset surface Q, which encodes uncertainty. Our current rendering
style with solid surface for the mean tensor and a transparent sur-
face for uncertainty is straightforward. More advanced rendering
techniques are possible, which may be optimized towards a simul-
taneous perception of the shapes of both G and Q. This includes
illustrative approaches, opacity optimization for surfaces [GSM∗14]
or a piecewise rendering [ZSL∗16].

Optimal uniqueness sampling. While the current implementation
relies on a random point sampling for computing uniqueness num-
bers, better sampling strategies may result in even smaller, i.e.better,
uniqueness numbers for the uncertain glyphs. This, however, does
not affect the actual glyph design or visualization, it only provides
better information about uniqueness.

Extension to general (non-symmetric) tensors. For general 3D
tensors we have 9 coefficients for the mean tensor and 45 of the
covariance matrix. It seems to be challenging but not hopeless to
extend our approach to general tensors.

8. Conclusions

The visualization of symmetric second-order tensors with uncer-
tainty is a challenging problem: such tensors depend on 6 param-
eters in 3D, and the presence of uncertainty introduces another 21
parameters from covariance. This work presents – to the best of our
knowledge – the first approach to direct visualization of uncertain
tensors that incorporates all parameters in a single glyph. The new
uncertain glyph is based on some standard glyph for certain tensors,
which represents the mean tensor, and enriched by a scalar field that
represents tensor covariance. As variance of intrinsic tensor proper-
ties can be derived from the covariance matrix, the full uncertainty
information is encoded. The construction of the uncertain glyph
respects important design properties for tensor glyphs, and provides
a bijective map between the glyph and the uncertain tensor (i.e.,
mean tensor and covariance). This means that each uncertain tensor
is assigned a unique glyph for a given class of standard tensor glyphs
as basis. We derive formal criteria for uniqueness that can be used
in formal proofs as well as for measuring “uniqueness” empirically
for glyph instances. The empirical study is helpful because although
the approach for proving or disproving uniqueness is simple (with
help of lemma 1), the complexity of the formal expressions may
“explode” if the basis glyph is defined w.r.t. a spectral basis. We
demonstrate uncertain glyphs for a number of 2D and 3D exam-
ples. The visual comparison of the uncertain glyph for a best-fitting
distribution with overlaid glyphs of the given ensemble members,
indicates that the additional uncertainty can be encoded in a way that
provides an idea of the given distribution. This is also emphasized
by experiments where ensembles are generated by varying spectral
parameters of the glyph. With this in mind, we believe that this work
provides a valuable insight into encoding the effect of covariance on
symmetric order tensors and the new glyphs provide a valuable tool
for visual assessment of uncertain tensor data. This is demonstrated
for a number of data sets.

Appendix

Rotations in tensor space

Given is a symmetric tensor S ∈ R3×3. For any rotation matrix
R in (2) that acts on S, the corresponding rotation R̂ that acts on
v(S) ∈ R6 can be derived as

R̂ =

(
R11 R12
R21 R22

)
with
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Ours

eigenmode 1 eigenmode 2 eigenmode 3

eigenmode 4 eigenmode 5 eigenmode 6

(a) (b)

Ours

eigenmode 1 eigenmode 2 eigenmode 3

eigenmode 4 eigenmode 5 eigenmode 6

(c) (d)

Figure 14: Two almost identical uncertain tensors having almost identical glyphs by our method ((a) and (c)) but significantly different glyphs
in the visualizations of [AWHS16] ((b) and (d)): [AWHS16] is not continuous.

R11 = R◦R
R21 =

√
2 R(132)(123) ◦R(213)(123)

R12 =
√

2 R(123)(132) ◦R(123)(213)

R22 = 2 R(132)(132) ◦R(213)(213)−R(321)(321) ,

where ◦ denotes the entrywise Hadamard product of matrices and the
subindices (i jk) denote permutations of matrix rows and columns,
respectively. Note that [Hel94] provides a different construction
based on plane rotations.

Sketch of Proof of Theorem 2

For the proof of theorem 2, we restrict ourselves to the 2D case. The
basic idea is simple: provide 6 sample points on the glyph curve and
show that they give a full rank matrix M. The technical difficulty
consists is the fact that the superquadric glyphs are parametrized in
the spectral basis, whereas partial derivatives must be computed w.r.t.
to the tensor components. We only give the (intermediate) results
for derivations. Given is a symmetric positive definite tensor S and
its spectral decomposition S = RΛRT where R is a rotation matrix
with eigenvectors as columns, and Λ =

(
λ1 0
0 λ2

)
has the eigenvalues

0 < λ2 ≤ λ1 on its diagonal. Then the parametric representation of
the glyph is

g(S,θ) = RΛ

(
cosα

θ

sinα
θ

)
(19)

with α =
(

2λ2
λ1+λ2

)γ

, xα = sgn(x) |x|α, and γ≥ 0 serving as a shape
parameter. W.l.o.g. we assume that S is diagonal, i.e., R = I. Note
that this can always achieved by a change of the coordinate system.
However, the main diagonal S = Λ generally has non-vanishing
partials w.r.t. the off-diagonal entries s12, because any (infinitesimal)
change of the rotation results in a change of s12.

We compute the gradient for the factors of g and summarize the

results as

∇sR =

[(
0 0
0 0
)
,
(

0 0
0 0
)
,

√
2

2(λ1−λ2)

(0 −1
1 0

)]
,

∇sΛ =
[(

1 0
0 0
)
,
(

0 0
0 1
)
,
(

0 0
0 0
)]
,

∇sα = α γ

λ1+λ2

(
−1 , λ1

λ2
, 0
)T

.

Note that these expressions are well defined only for λ1 6= λ2 and
λ1,λ2 6= 0 as required in theorem 2. This gives

∇sg = (∇sR Λ+R∇sΛ)

(
cosα

θ

sinα
θ

)
+ R Λ∇sα

(
cosα

θ lncosθ

sinα
θ lnsinθ

)
.

Now we select 6 sample points as

gi = g(S, i π

6
) for i = 0, . . . ,5 .

Then computing the gradients ∇sg(S, i π

6 ) at the sample points,
where common factors that are constant in s – they do not affect the
rank of M – are dropped and some symmetries are exploited, gives
sample vectors qi of the form

(q1, . . . ,q6) =

1 a c 0 −c −a
0 b d 1 −d −b
0 1 1 0 1 1

 (20)

for certain terms a,b,c,d, which depend on λ1,λ2,γ. Applying (17)
(for the 2D case) to (20) gives

M =


1 a2 c2 0 c2 a2

0 b2 d2 1 d2 b2

0 1 1 0 1 1
0
√

2ab
√

2cd 0
√

2cd
√

2ab
0
√

2a
√

2c 0 −
√

2c −
√

2a
0
√

2b
√

2d 0 −
√

2d −
√

2b

 .

Since detM = 8
√

2 f1 f2 with

f1 = f1(λ1,λ2,γ) = (ad−bc)

f2 = f2(λ1,λ2,γ) = (ab− cd) ,

M has full rank if neither f1 nor f2 vanish, which is the case. Instead
of summarizing formal expressions for f1, f2 and a formal proof,
we provide “visual evidence” that f1 f2 6= 0: Figure 15 shows the
functions f1 and f2 plotted as height fields for λ1 = 1 in the range
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λ2 ∈ [0,1] and γ ∈ [0,2]. It shows that f1, f2 do not vanish for γ > 0
and 0 < λ2 < λ1.

Showing theorem 2 for the 3D case requires a sampling of 21
points on the glyph surface. The basic idea is same as for 2D, how-
ever, the involved expressions become significantly more complex.

8.1. Full matrices for experiment in Figure 13

The two matrices used as covariance tensors are given as

C1 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 3

 ,C2 =


0 1 2 0 0 0
1 0 3 0 0 0
2 3 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
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