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Abstract
Radial axes plots are multivariate visualization techniques that extend scatterplots in order to represent high-dimensional
data as points on an observable display. Well-known methods include star coordinates or principal component biplots, which
represent data attributes as vectors that define axes, and produce linear dimensionality reduction mappings. In this paper
we propose a hybrid approach that bridges the gap between star coordinates and principal component biplots, which we
denominate “adaptable radial axes plots”. It is based on solving convex optimization problems where users can: (a) update the
axis vectors interactively, as in star coordinates, while producing mappings that enable to estimate attribute values optimally
through labeled axes, similarly to principal component biplots; (b) use different norms in order to explore additional nonlinear
mappings of the data; and (c) include weights and constraints in the optimization problems for sorting the data along one axis.
The result is a flexible technique that complements, extends, and enhances current radial methods for data analysis.

Categories and Subject Descriptors (according to ACM CCS): [Human-centered computing]: Visualization—Visualization tech-
niques [Probability and statistics]: Statistical paradigms—Statistical graphics
[Human-centered computing]: Visualization—Visualization theory, concepts and paradigms [Probability and statistics]: Statis-
tical paradigms—Exploratory data analysis

1. Introduction

Multivariate visualization is an active research field whose goal
consists of representing information related to multidimensional
data samples, attributes, and the relationships between them, as
faithfully as possible on low-dimensional observable displays. In
this paper we focus on radial axes plots (see [DLR09, DBB10,
LT16]), which are visualization techniques that extend scatterplots
in order to consider as many variables as desired. Specifically, they
show attribute information through vectors that represent radial
axes, and high-dimensional data samples as points, on a two or
three-dimensional graphic with one coordinate system.

Among these methods, star coordinates (SC) [Kan00, Kan01]
and principal component biplots (PCB) [Gab71, GH95, Gre10,
GGLlR11] stand out as one of the most prominent radial axes
methods for exploratory data analysis. Firstly, SC is highly inter-
active since it allows users to select any configuration of axes,
and therefore to generate plots associated with any linear map-
ping, when performing exploratory analysis tasks like searching
for cluster structure, outliers, or data with desired characteristics
[LKZ∗15, RSRDS16]. However, one of its major drawbacks is the
difficulty to estimate (i.e., recover) original attribute values visually
[DLR09, RSS14]. On the other end of the spectrum, PCB [Gab71]

consist of specific scaled versions of the principal component anal-
ysis (PCA) plot. In particular, they can be understood as the product
of solving a mathematical optimization problem whose goal con-
sists of finding a set of axis vectors and embedded points that will
allow to estimate attribute values optimally, by projecting points
orthogonally onto adequately calibrated (i.e., labeled) axes. More-
over, depending on scaling factors, PCB can also optimize proper-
ties such as distance preservation between samples, or correlation
approximation between variables. Nevertheless, in contrast with
SC, they build static visualizations where users can not update the
axis vectors interactively.

The main contribution of this paper is a flexible projection tech-
nique based on a set of radial axes that can be understood as a
hybrid approach between SC and PCB. The projections are defined
through convex norm approximation problems that are extensions
to the PCB optimization problem. In particular, the approach also
minimizes the errors users would make when approximating high-
dimensional attribute values by projecting mapped points orthog-
onally onto the axes. However, it incorporates elements and vari-
ants that not only offer users a richer set of projections to explore,
but it also facilitates several data analysis tasks. In particular, the
proposed framework considers: (a) the possibility of modifying the
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axis vectors freely and interactively, which bridges the gap between
SC and PCB; (b) using alternative norms in order to project the
data nonlinearly and explore it from additional perspectives; and
(c) including weights and constraints in the optimization problem
for sorting the plotted points according to one attribute. The result
is a flexible and powerful technique that complements, extends, or
enhances current radial methods for data analysis.

The rest of the paper is organized as follows. Section 2 describes
the most relevant radial axes methods, introducing the used mathe-
matical notation. In Sec. 3 we describe our proposed approach and
its relationships with other radial methods. Finally, Sec. 4 presents
the main conclusions and a discussion.

2. Related work and notation

This section recapitulates several radial axes methods that map data
samples from a high n-dimensional data space onto a lower m-
dimensional observable display, with n ≥ 3 ≥ m (in this paper we
will focus on visualizations on a plane, i.e., m = 2). The methods
therefore represent each data sample x ∈R

n by an embedded point
p ∈ R

m on the visualizations. The mappings rely on a set of n m-
dimensional axis vectors vi, for i = 1, . . . ,n, with a common origin
point, where vi is associated with the i-th data variable. Through-
out the paper V will denote an n×m matrix whose rows contain
the axis vectors vi. In addition, given a data set of cardinality N, X
will represent the N × n data matrix whose rows contain the data
samples, while P will be an N ×m matrix whose rows consist of
the data samples’ low-dimensional representations pi.

2.1. Principal component biplots

Principal component biplots are fixed static visualizations that
show optimal configurations of axis vectors (V) and embedded
points (P) for numerical data sets (other types of biplots can use
categorical data [GH95,Gre10,GGLlR11]). They provide the most
accurate estimates of attribute values across an entire data set (in
a least-squares sense), and can also optimize distance preservation
between samples, or correlation approximation between variables.
Formally, they can be understood as the result of solving the fol-
lowing optimization problem:

minimize
P ∈ R

N×m,V ∈ R
n×m

‖PVT−X‖2
F, (1)

where the subscript F denotes the Frobenius norm. It is important
to note that in this problem both axis vectors and embedded points
are variables. The optimal solution follows:

PVT = X̂, (2)

where X̂ is the optimal rank m approximation of the data matrix X,
according to the (squared) Frobenius norm, which can be charac-
terized by the compact singular value decomposition of X [EY36].
In particular, let X = UDZT represent the singular value decom-
position of X, where the diagonal elements (singular values) in D
appear in descending order. In that case X̂ can be expressed as fol-
lows:

X̂ = UmDmZT

m,

where the N ×m matrix Um corresponds to the first m columns of
U, the m×m diagonal matrix Dm is the first m×m diagonal block
of D (i.e., it contains only the m largest singular values of X), and
the n×m matrix Zm consists of the first m columns of Z.

Since PCB require decomposing X̂ into the product of two ma-
trices (see (2)), it is factorized as follows:

X̂ = (kUmD1−c
m )

(1
k

Dc
mZT

m

)

= PVT, (3)

for some suitable (scaling) constants k and c. Although users could
select these values interactively, certain pairs are especially relevant
since they optimize properties of the visualizations. For instance,
when the decomposition consists of:

P = UmDm, and VT = ZT

m,

the obtained plot corresponds to the orthogonal projection of the
data onto the subspace spanned by the m first eigenvectors of the
data’s covariance matrix (i.e., the orthogonal directions of maxi-
mum variance in the data). In other words, the result is the PCA
plot. Another interesting PCB assigns:

P =
√

NUm, and VT = (1/
√

N)DmZT

m,

which not only allows to estimate original distances between data
samples through distances between embedded points, but the dot
products between the resulting axis vectors lead to optimal approx-
imations of the covariances, variances, and correlation coefficients
between the data variables (see [Gab71]).

One of the most interesting properties of PCB is the possibility
to estimate original data attributes by projecting embedded points
orthogonally onto adequately “calibrated” (i.e., labeled) axes, as il-
lustrated in Fig. 1(a) with a subset of the Breakfast Cereal data set
used in [YMSJ05]. Calibration consists of placing tick marks, and
optionally numerical labels, along the axes. When the data is stan-
dardized these are usually located at integer positions, indicating
standard deviation units. In the figure we have used standardized
data, but have labeled the axes with original (non standardized) val-
ues.

In PCB the estimates are the rows of X̂. Therefore, due to (2),
they correspond to the dot products between the embedded points
in P and the axis vectors in V. In particular, the vector of estimated
attributes of a data sample x is defined through:

x̂ = Vp, (4)

where x̂i = vT

i p. This implies that the distance between tick marks
separating consecutive integers on the i-th axis must be 1/‖vi‖.

In addition, it can be shown that the most accurate estimates can
be obtained when the mean of the data is represented at the origin
point of the axis vectors. In this regard, centering the data allows
to represent the 0 value for every attribute at the origin point of
the axis vectors, which facilitates labeling the axes. Moreover, stan-
dardizing the data allows to interpret distances between consecutive
tick marks as standard deviation units.

In PCB users do not interact in order to select a set of desired
axes. In other words, V can not be any arbitrary matrix. Thus, inter-
active applications include controls for data analysis and graphical
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Figure 1: Examples of radial axes plots. A principal component
biplot of the Breakfast Cereal data set is shown in (a), where the
specific configuration of the axis vectors leads to a PCA plot. The
dots symbolize individual cereals, while the vectors and axes rep-
resent data variables. Users can find optimal approximations (es-
timates) of data attributes by projecting embedded points onto the
labeled axes. In the example p represents the cereal “All-Bran with
Extra Fiber”, whose attribute values are x = (0, 50, 4, 25), for
sugar, calories, protein and vitamin content. The corresponding es-
timates obtained through orthogonal projections are x̂ = (-3.13,
67.32, 3.81, 15.21). The color bar represents caloric content. In the
star coordinates plot in (b) users can manually select specific sets
of axis vectors. In this case, healthier cereals are located towards
the left.

option manipulation [Hof04, Udi05, FGL13], but not for updating
the orientation or lengths of the axis vectors.

Finally, given a valid choice for V (in accordance with (3)), PCB
map high-dimensional data samples (x) onto their low-dimensional
representations (p) according to the following linear equation:

p = V†x, (5)

where † denotes the Moore-Penrose pseudoinverse. In practice V is
usually full rank, in which case:

p = (VTV)−1VTx. (6)

2.2. Star coordinates

The simplest radial method is star coordinates (SC) [Kan00,Kan01,
RSRDS16]. The low-dimensional representation p ∈ R

m of a data
sample x ∈ R

n is simply a linear combination of the vectors vi,
where the linear coefficients correspond to the attribute values of x.
Formally:

p = x1v1 + x2v2 + · · · + xnvn = VTx,

which can be written in matrix form as P = XV.

In SC the interpretation of the vectors is straightforward: the ori-
entation determines the direction in which a variable increases, and
the length specifies the amount of contribution of a particular vari-
able in the resulting visualization, given that all variables have a
similar scaling. Traditionally, the data has been often normalized
so that its range becomes [0,1] for every variable. However, cen-
tering the data allows to estimate original data values more accu-
rately [RSS14].

Lastly, SC is an interactive method that allows users to specify
any layout of the axis vectors in order to visualize the data from
different perspectives. Thus, it is a general linear method that can
produce any linear mapping from the data space onto the observ-
able display. Figure 1(b) shows an example where the configuration
of axis vectors allows to characterize healthy vs. unhealthy break-
fast cereals.

2.3. Orthographic star coordinates and axis calibration

Orthographic star coordinates (OSC) [LT13] is a variant of SC that
consists of constraining the columns of V so that they form an
orthonormal set of vectors. This provides more faithful represen-
tations of the data since it avoids introducing distortions, and en-
hances preserving relative distances between samples. In addition,
it helps reducing attribute estimation errors when approximating
values through projections onto calibrated axes [RSS14]. A draw-
back of this approach concerns the possibility of choosing specific
layouts for the axes. For instance, when given some initial matrix
of axis vectors V defined by the user, the new orthogonal matrix
V⊥ will contain different axis vectors that may not reflect the users’
initial intentions. The transformed matrix V⊥ can be obtained, for
example, by simply applying the well-known Gram-Schmidt or-
thogonalization procedure, and will share the same range as that of
V. Finally, the OSC mapping is defined through:

p = VT

⊥ x, (7)

where VT

⊥ V⊥ = I is the identity matrix.

3. Adaptable radial axes plots

The following sections describe our proposed extensions to PCB
that stem from modifying their optimization problem. We denote
these variants as “adaptable radial axes plots”.

3.1. Arbitrary layouts of axis vectors

Principal component biplots provide a set of visualizations (linear
mappings) that allow to optimally approximate attribute values, dis-
tances, or correlation coefficients. However, they do not allow users
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to select arbitrary directions for the axis vectors associated with the
variables. In contrast, SC allows full user interaction, where users
can choose arbitrary layouts of axis vectors in order to produce
any linear mapping. This permits searching for clusters, outliers,
or data with certain features, but at the expense of losing accuracy
when estimating attribute values, distances, or correlation coeffi-
cients (note that the mapping does not arise from any optimization
procedure). In this section we explore a hybrid technique that al-
lows users to choose arbitrary configurations of axis vectors, but
maps high-dimensional samples as in PCB, which optimizes at-
tribute estimation accuracy.

Principal component biplots find optimal sets of axis vectors V
and embedded points P simultaneously by solving (1). Alterna-
tively, we consider the possibility of selecting any arbitrary layout
of axis vectors, where V is fixed and chosen by the user. The ap-
proach is able to build a linear mapping based on V that enables to
estimate attribute values optimally through projections onto labeled
axes (similarly to PCB). The idea is based on solving the following
optimization problem:

minimize
P ∈ R

N×m
‖PVT−X‖2

F,

This problem (whose solution is P = X(V†)T) can be decomposed
into simpler ones, since the solutions to the rows of P are indepen-
dent from each other. In particular, the mapping of a data sample x
onto a point p on the observable display can be obtained by solving:

minimize
p ∈ R

m
‖Vp−x‖2

2, (8)

The optimal (closed-form) solution to this problem is:

p = V†x, (9)

which is identical to (5). Therefore, this variant also defines a lin-
ear mapping through V†, but can be considered to be a more flex-
ible generalization since it allows arbitrary layouts of axis vectors.
Lastly, in comparison with SC, observe that the method is essen-
tially replacing V by V†.

Figure 2 shows the motivation for the optimization problem
graphically. Given some high-dimensional data sample x, the
method finds an optimal point p on the observable display in or-
der to minimize the differences (|x̂i − xi|) between the attribute
values of x and the estimates x̂ associated with orthogonal projec-
tions of p onto the axes. Principal component biplots minimize the
sum of squared differences, but other options are also possible (see
Sec. 3.2). Lastly, similarly to SC, the orientation of an axis vector
in our approach determines the direction in which attribute values
for the associated variable should increase.

Figure 3 illustrates the relationship between the previously men-
tioned radial axes methods regarding estimation accuracy, depict-
ing adaptable radial axes plots as a hybrid approach between PCB
and SC.

The following result shows that OSC and adaptable radial axes
plots provide the same estimation accuracy.

Proposition 1 Given a full-rank matrix of axis vectors V, the sum
of squared estimation errors is identical for OSC and adaptable ra-
dial axes plots.
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Figure 2: Geometrical motivation for our proposed adaptable ra-
dial axes plots. Given an arbitrary set of axis vectors (vi), the
method searches for an optimal low-dimensional representation p
of a data sample x by minimizing a function of the lengths of the
dark segments. These correspond to the differences between the
data attributes xi and their estimates x̂i (according to the scaling
of the i-th axis), which are associated with the orthogonal projec-
tions of p onto the axes. Lastly, note that the distance between tick
marks on the i-th axis is 1/‖vi‖.
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Figure 3: Relationship between SC, OSC, adaptable radial axes
plots, and PCB regarding estimation accuracy. With OSC and
adaptable radial axes plots it is possible to achieve better estimates
than with SC. PCB consider specific layouts of axis vectors that
lead to the most accurate estimates for an entire data set. Finally,
when V = 1/kZmDc

m for any pair of valid values of k and c, an
adaptable radial axes plot is a PCB.

Proof In adaptable radial axes plots the estimate x̂ of some data
sample x is:

x̂ = Vp = VV†x = V(VTV)−1VTx,

due to (4), (6), and (9). Therefore, x̂ is the orthogonal projection of
x on to the range of V, which we denote as R(V).
In OSC the estimate x̂ can be expressed as (see (7)):

x̂ = V⊥p = V⊥VT

⊥ x = V⊥(VT

⊥ V⊥)
−1VT

⊥ x,
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since VT

⊥ V⊥ = I. Thus, it is the orthogonal projection of x onto
R(V⊥).
Finally, since R(V) =R(V⊥), the estimates, and the corresponding
sums of squared estimation errors, are identical for both methods.

Figure 4 illustrates the differences between SC, the proposed
variant, and OSC. The radial axes plots show projections of the
same standardized data used in Fig. 1, where distances between
tick marks on the axes indicate standard deviation units. Firstly, re-
call that the configuration of axis vectors in the PCB in Fig. 1 is
constrained in order to maximize attribute estimation accuracy (in
that PCB the sum of squared estimation errors over every sample is
85.97). Instead, SC and adaptable radial axes plots allow users to
choose alternative layouts in order to search for data with certain
desired features. Fig. 4(a) shows a SC plot in which the configu-
ration of axis vectors characterizes healthy vs. unhealthy cereals,
where the healthier ones are located towards the left. Nevertheless,
estimates of attribute values through projections onto labeled axes
are inaccurate for SC. In particular, the sum of squared estimation
errors is 358.41. Alternatively, in (b) our approach applies the map-
ping in (9), which provides a different set of embedded points that
reduces the sum of squared estimation errors down to 171.18, with-
out altering the initial configuration of axis vectors. Lastly, in (c)
the visualization corresponds to the associated OSC plot, which
achieves the same estimation accuracy. Nevertheless, OSC uses a
different set of axis vectors, provided by the new orthonormalized
matrix V⊥. Note that the lengths and orientations of the axis vectors
have been modified with respect to the initial configuration speci-
fied by the user.

Lastly, an important property of adaptable radial axes plots when
using the `2

2 norm (i.e., the squared Euclidean norm) is that it al-
lows to choose layouts of axis vectors in order to generate any lin-
ear mapping. Consider some linear transformation from R

n to R
m

defined by some known matrix A, i.e., p = Ax. Since the linear
mapping of adaptable radial axes plots is defined through (9), the
axis vectors can be recovered through V = A†. Thus, by letting the
axis vectors be the columns of A†, the adaptable radial axes plot
will generate the linear mapping defined by A.

3.2. Alternative norms

The optimization problem in (8) uses the `2
2 norm, and is therefore

a least-squares problem that can be solved very efficiently through
the closed form solution in (9). Geometrically, the goal consists of
minimizing the sum of squared lengths of the segments between
the attributes xi and their estimates x̂i in Fig. 2. In this section we
study the possibility of using other types of norms, which minimize
the lengths of the segments in alternative ways. Formally, the more
general optimization problem is:

minimize
p ∈ R

m
‖Vp−x‖,

(10)

where ‖ · ‖ can be any norm on R
n. The problem is convex (see

[BV04]), which allows finding global solutions reliably. In this pa-
per we consider the `1 and `∞ norms, which lead to problems that
can be cast as linear programs (LP).

The `1 norm considers minimizing the sum of the absolute values
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Figure 6: Estimation errors for sample 13 (Chevrolet Monte Carlo)
of the Auto MPG data set according to the three plots in Fig. 5.

of the differences between the attributes xi and their estimates x̂i.
Formally, the objective function is:

‖Vp−x‖1 = ‖x̂−x‖1 =
n

∑
i=1

|x̂i − xi|,

and the problem can be rewritten as the following LP:

minimize
t ∈ R

n, p ∈ R
m

1Tt

subject to −t � Vp−x � t,
(11)

where 1 is the n-dimensional vector of all ones, and � denotes vec-
tor componentwise inequality.

Alternatively, the `∞ norm minimizes the maximum absolute dif-
ference between xi and x̂i. The objective function is therefore:

‖Vp−x‖∞ = ‖x̂−x‖∞ = max
i=1..n

|x̂i − xi|,

and this problem can also be expressed through a LP:

minimize
t ∈ R, p ∈ R

m
t

subject to −t1 � Vp−x � t1.
(12)

The use of different norms provides different views of the data
that can be useful in exploratory tasks (e.g., when searching for data
with specific characteristics). Figure 5 shows three plots of sam-
ples from the Auto MPG data set [Lic13], for a fixed configuration
of axis vectors that represent four data variables. The visualiza-
tions in (a), (b), and (c), use the `2

2, `1, and `∞ norms, respectively.
In this example, users interested in finding and selecting samples
with large values for Acceleration, Horsepower, and Weight, but
low values of MPG, would have to examine and compare several
candidates located in the second (top-left) quadrant, and ideally as
far as possible from the origin. However, the choice of norm can
affect analysts’ decisions considerably for certain samples. In this
example, the car “Chevrolet Monte Carlo”, marked with a dark red
× symbol, is represented at different locations depending on the
norm used. Observe that the sample seems like an adequate candi-
date when searching for data with the mentioned characteristics in
(b), which applies the `1 norm. However, the sample does not stand
out in (a) when using the `2

2 norm, and would clearly be discarded
in (c) when employing `∞. The example therefore illustrates how
alternative norms provide different views of the data that can reveal
interesting samples or patterns, offering analysts a wider range of
possibilities in exploration and decision support tasks.
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Figure 4: Linear radial axes plots involving the (standardized) data set used in Fig. 1. In (a) the visualization corresponds to a SC plot
where the axis vectors have been chosen in order to depict healthy cereals towards the left. However, estimates of attribute values through
projections onto labeled axes (in this case tick marks represent standard deviation units) are highly inaccurate in SC. In particular, the sum
of squared estimation errors in this plot is 358.41. Our approach applies a different mapping, through the pseudoinverse matrix V†, which
reduces the sum of squared estimation errors down to 171.18, maintaining the initial configuration of axis vectors, as shown in (b). Finally,
(c) shows the related OSC plot, which also achieves the same enhanced estimation accuracy (171.18). However, the method needs to use a
different set of axis vectors defined through a new orthonormalized matrix V⊥ (obtained through the Gram-Schmidt procedure).
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Figure 5: Different views of a subset of the Auto MPG data set through the: (a) `2
2, (b) `1, and (c) `∞ norms. In this example, users interested

in searching for samples with large values for Acceleration, Horsepower, and Weight, but low values of MPG, would focus on points in the
top-left corner of the plots, but may make different decisions depending on the visualization. The location of the marked dark red × symbol
(Chevrolet Monte Carlo) clearly differs in the three plots, and only seems interesting when using the `1 norm.

Analysts can choose the type of norm depending on how they re-
gard the severity of large estimation errors. With the `∞ norm sam-
ples are mapped in order to decrease as much as possible the maxi-
mum absolute difference between the attribute values and their es-
timates. The `2

2 norm also penalizes large estimation errors, but to a
lesser extent than `∞. Finally, with the `1 norm some estimation er-
rors may be large, if it helps others to be very small. Figure 6 shows
the estimation errors associated with the marked sample (Chevrolet
Monte Carlo) in the three plots in Fig. 5. We have chosen that sam-
ple for illustrative purposes since it can not be represented well for
the particular layout of axis vectors (i.e., the estimation errors are
large for the sample). For the `∞ norm the maximum (absolute) es-
timation error (1.42) is the lowest, but the estimates are inaccurate
for every variable. The `2

2 norm hampers the estimate for Acceler-
ation, but is able to reduce the estimation errors on the remaining
variables. The `1 norm is able to achieve accurate estimates on the
variables, but at the expense of an even larger estimation error on

Acceleration. Finally, note that these estimation errors could be vi-
sualized (e.g., through the size of the plotted points) in order to in-
dicate which samples are represented well according to a particular
layout of axis vectors (see [RSS14]).

Regarding efficiency, we carried out experiments in order to
evaluate the average running time needed to map 1000 data sam-
ples onto a plane (m = 2) when using the three norms, and for
n ∈ [3,21]. The data components and coordinates of the axis vec-
tors were drawn from a standard normal distribution. In particular,
we measured the time needed to solve (9) for the `2

2 norm, and the
linear programs associated with (10) for the `1 and `∞ norms. Fig-
ure 7 shows the median of the running times averaged over 20 tri-
als, and measured on a personal computer with a fourth generation
Intelr CoreTM i7-4712HQ 3.3 GHz processor and 16 GB of RAM.
We wrote the code in MATLABr, using the pinv command to
calculate pseudoinverse matrices, and the linprog script to solve
linear programs. In particular, we chose an interior-point algorithm

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



M. Rubio-Sánchez, A. Sanchez and D. J. Lehmann / Adaptable Radial Axes Plots for Improved Multivariate Data Visualization

when using the `1 norm, while we selected an active-set method
when using the `∞ norm. The optimization problem for the `2

2 norm
can be solved in the order of microseconds, due to its closed form
solution. However, both LP require in the order of seconds. Thus,
while the mapping can be computed in real time when using the
`2

2 norm, the `1 and `∞ norms may not be suitable in interactive
settings when working with large data sets.

3.3. Strategies for ordering data

Finding extrema, sorting, or determining ranges are fundamental
analytic tasks [AES05]. However, to the best of our knowledge,
current radial axes methods do not support them. In this section
we consider several alternative convex optimization problems for
ordering the embedded points according to one variable, which im-
mediately provides information about the distribution of the data
for such attribute, including extrema, range, shape, or outliers.

3.3.1. Constraints for exact estimates on one axis

In methods that depict data samples as points the values for a par-
ticular attribute can be encoded, for instance, through the size or
color of the dots. Alternatively, the orthogonal projections of the
points onto the axes allow to use their position, which is perceptu-
ally more accurate [Ber83, CM84, Mac86].

Firstly, consider the problem of plotting the data so that the pro-
jections of the embedded points onto one of the axes, say the i-th
one, are exact (note that forcing the projections to also be exact
for a second variable would fix the location of the points, where
the resulting visualization would be equivalent to a skewed scatter-
plot between the two chosen variables). In that case, x̂i = xi, and
the plotted points would be ordered correctly along the i-th axis.
This can be achieved by solving the following constrained convex
optimization problem:

minimize
p ∈ R

m
‖Vp−x‖,

subject to vT

i p = xi,
(13)

Figure 8 illustrates the approach through an example that uses
the Auto MPG data, and the same variables as in Fig. 6. Firstly,
in (a) we have included an adaptable radial axes plot where the
color coding corresponds to the variable MPG. Additionally, we
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Figure 7: Average runtime needed to solve (10) 1000 times when
using the `1, `2

2, and `∞ norms. The running times for the `2 norm
range from 100 to 200 microseconds.

have marked the samples that contain the lowest and largest val-
ues for MPG (i.e., the extrema) with a red + and × symbol, re-
spectively. It is apparent that the data is not well ordered along the
MPG axis. This can be seen by comparing the colors of neighbor-
ing points, and also since the point that exhibits the largest estimate
is not an extremum. In (b) we have applied the optimization prob-
lem in (13) in order to represent the data perfectly, and therefore
correctly ordered, along the MPG axis.

Lastly, we have colored the points according to the values of
MPG in order to show that the method indeed orders the data cor-
rectly. However, since the estimates for MPG along its axis are ex-
act, color can be used to encode other information, such as the qual-
ity of the estimates (see [RSS14]). Thus, the approach provides an
extra degree of freedom in the visualization that allows to include
additional information.

3.3.2. Constraints for correct orderings on one axis

The strict constraint that forces exact estimates for an attribute can
be used to order the data correctly along the corresponding axis.
However, it can increase the estimation errors on the other variables
considerably. In order to alleviate this issue, in this section we con-
sider a milder constraint that only requires the points to be ordered
correctly along the axis. The new convex optimization problem for
ordering the points correctly along the k-th axis is:

minimize
P ∈ R

N×m
‖PVT−X‖,

subject to vT

k pπ( j) ≤ vT

k pπ( j+1), j = 1, . . . ,N −1,
(14)

where p( j) denotes the j-th row of P, while π represents a permuta-
tion of the first N positive integers that sorts the samples according
to the values of the k-th attribute. In particular, x(i)k < x( j)

k ⇒ π(i)<
π( j). In addition, ‖ · ‖ denotes entrywise matrix norms. In partic-
ular, ‖ · ‖1, ‖ · ‖2

F , and ‖ · ‖∞ would minimize the sum of absolute

estimation errors (∑i, j |vT

i p( j)− x( j)
i |), the sum of squared estima-

tion errors (∑i, j(vT

i p( j)− x( j)
i )2), and the maximum absolute esti-

mation error (maxi, j |vT

i p( j)− x( j)
i |), respectively. In this case, the

solutions for the plotted points depend on each other. This implies
that the problem can not be broken up into N individual subprob-
lems. Thus, the problem’s variable is the entire matrix P.

Figure 8(c) shows an example of the approach using ‖·‖2
F for the

Auto MPG data set and the same configuration of axis vectors as in
(a) and (b). Observe that the points are ordered along the MPG axis.
Although the estimates for MPG are not exact, the overall sum of
squared estimation errors decreases with respect to the plot in (b).
In particular, the average squared estimation error (over the 392
samples and four attributes) is 0.62, 0.67, and 0.65, for the plots in
(a), (b), and (c), respectively.

3.3.3. Enlarging an axis vector

A second idea that can be used to (approximately) sort the data
along one axis consists of increasing the length of the axis vector
of interest. Observe that enlarging an axis vector enhances the accu-
racy of the estimates for the associated attribute. In particular, since
the distance between consecutive integers on the axis decreases, the
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Figure 8: Strategies for ordering data according to one variable (axis). The example uses the four variables employed in Fig. 6. The color
coding indicates values of MPG, where the samples represented by the red + and × symbols contain the lowest and largest values for MPG,
respectively. In (a) the values for MPG are not ordered correctly in the adaptable radial axes plot (note that the orthogonal projection of
the × symbol onto the MPG axis does not provide the largest estimate). In (b) the values of estimates for MPG are exact by applying (13).
Another option consists of using (14), which orders the data correctly along one axis, as shown in (c) for ‖ · ‖2

F . Although the estimates for
the variable MPG are not exact, the overall accuracy considering all of the attributes is increased with respect to the plot in (b). It is also
possible to sort the values by increasing the length of the corresponding axis vectors. In (d) the values for MPG can be estimated well by
increasing the length (to 4) of the corresponding axis vector. However, since this strategy compresses the points in the direction of the axis,
users would require zooming-in in order to visualize the plot correctly, as shown in (e). An alternative approach, which is more efficient than
solving (13), consists of increasing the weight related to the variable and solving (15), as illustrated in (f). In this example, the weight for
MPG is 10 times larger than the rest of the weights. Note the similarity between the plots in (b) and (f).

same absolute distance on the plot will yield a larger estimation er-
ror. Thus, the optimization problem focuses on enhancing the ac-
curacy of the estimates for the attribute.

The result can be seen in Figure 8(d), where increasing the length
of the axis vector (in this case from 1 to 4) for MPG produces a
visualization where the points are ordered better along the axis.
However, this approach compresses the points in the direction of
the axis, where the tick marks appear much closer to each other.
Thus, this forces users to zoom-in on the plot, where the length of
the MPG axis vector would no longer be visible, as shown in (e).

Moreover, the length of the axis vector may have to be extraor-
dinarily large in order to sort the points correctly (i.e., x̂( j)

i < x̂(k)i if

x( j)
i < x(k)i for the i-th attribute, where the superscripts indicate the

j-th and k-th data sample). For example, the axis vector correspond-
ing to MPG in the figure needs to be multiplied by 110 in order to
obtain a correct ordering of the points according to such variable.

The resulting plot turns out to be useless, even if we zoom in, due
to the strong compression effect. Finally, axis vectors can also be
enlarged in SC in order to sort the data. However, they also need to
be scaled by a large factor. For instance, when using the configu-
ration of axis vectors in Figure 8(a), it is necessary to multiply the
MPG vector times 145. In this case the plotted points are stretched
along the axis, giving the impression that they lie (roughly) on a
straight line.

3.3.4. Weights for controlling attribute estimation accuracy

We now introduce an additional element in the optimization prob-
lem that not only yields efficient solutions, but does not require
modifying the axis vectors. The idea consists of introducing mul-
tiplicative weights in the problem’s objective function as follows:

minimize
p ∈ R

m
‖W(Vp−x)‖,

(15)
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Figure 9: Analogy between the problems in (13) and (15). The
plot shows average distances between points plotted through (13),
where the estimates are exact for the i-th variable, and the corre-
sponding mapped points through (15), by scaling the weight (wi,i)
associated with the i-th variable, and where the rest of the weights
are equal to 1. Using a larger weight for one variable is very simi-
lar to solving (13), especially when using `1 or `2

2.

where W is a diagonal n× n matrix with nonnegative entries. To-
gether with the length of an axis vector, the weight wi,i allows to
control the relative importance of estimating attribute values cor-
rectly along the i-th axis. In particular, the algorithm that solves the
optimization problem will focus on finding solutions that reduce
estimation errors for variables related to larger weights. When us-
ing the `2

2 norm, (15) is a weighted least-squares problem whose
solution is p = (WV)†Wx. Thus, it can be solved very efficiently
in the order of microseconds, similarly to (9) (see Fig. 7).

Figure 8(f) shows an example where the weight for MPG is 1,
but 0.1 for the remaining variables. Since the lengths of the axis
vectors are all the same, the optimization problem provides a plot
that represents the data very well for MPG, due to its larger weight.
The corresponding plot is very similar to the one in (b), in which the
estimates are exact. Figure 9 shows that by increasing the weight
of a variable when using (15) it is possible to obtain a plot that will
resemble the one generated by (13). The graphic shows the average
distance between points plotted by both approaches, as a function
of the weight for a variable, when the remaining ones are equal to
1. The results are averaged over 20 trials that use a random config-
uration of 6 axis vectors with components drawn from a standard
normal distribution, and 100 data samples also drawn from a multi-
variate standard normal. It is apparent that the increasing the weight
produces a plot that resembles more closely the one that provides
exact estimates.

3.3.5. Efficiency comparison of the approaches

Figure 10 shows average (median) runtimes for solving (13) and
(14). The experiments were run in MATLABr. For solving the
constrained least-squares problem related to (13) for the `2

2 norm
we used the method lsqlin. For the `1 and `∞ norms we used
the function linprog, since the problems can be cast as lin-
ear programs. Alternatively, for the problem in (14) we have
used CVX, a package for specifying and solving convex programs
[GB08, GB14]. The results are averaged over 20 trials where we
solved both types of problems for 1000 data samples, and using the
`1, `2

2, and `∞ norms. The components of the data and axis vectors
were drawn from a standard normal distribution. The shorter run-
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Figure 10: Average runtimes needed to solve (13) and (14), for
N = 1000 data samples.

times related to the use of weights in (15) are essentially identical
to those shown in Fig. 7 for (10), since the cost of performing mul-
tiplications times matrix W is negligible. Thus, while the problems
can be solved for the `2

2 norm very efficiently, using weights would
be a preferable alternative when working with the `1 and `∞ norms
and large data sets, since they can require running for several sec-
onds.

4. Conclusions and discussion

This paper has introduced and analyzed in detail a multivariate vi-
sualization method based on a set of radial axes that can be viewed
as a hybrid approach between PCB and SC. Adaptable radial axes
plots expand principal component biplots’ potential for data anal-
ysis by incorporating the possibility of selecting configurations of
axis vectors freely in an interactive way, according to the analysts’
needs. In addition, our approach mitigates one of the main disad-
vantages of SC, which is the difficulty to estimate (i.e., recover)
data attributes accurately. Other important contributions include the
use of alternative norms that project the data nonlinearly and allow
users to explore it from additional perspectives, and new strategies
based on solving convex optimization problems that can be used to
sort data, find extremum values, or determine ranges of attributes.

Principal component biplots rely on Euclidean distances be-
tween data samples in order to construct the visualizations, while
other types of biplots related to multidimensional scaling or cor-
respondence analysis may use different metrics, such as the Ma-
halanobis or the chi-square distance [GH95, Gre10, GGLlR11]. In
this regard, note that our approach does not consider distances be-
tween data samples. The norms proposed in this paper are used
as a means to quantify estimation errors of individual samples in
the low-dimensional plots, and therefore share no connection with
metrics used in biplots. Similarly, in [GG16] the authors use a
weighted Euclidean distance to construct “weighted Euclidean bi-
plots”, whose goal is to approximate distances or dissimilarities be-
tween data samples. Instead, the weights that we have introduced
in Sec. 3.3.4 are used to control the accuracy of the estimates on
each axis. Thus, they are used for a different purpose.

Recently, several dimensionality reduction methods have ap-
peared in the literature where users can interactively modify visu-
alizations by updating the coordinates of points, or the distances
or neighboring relationships between them [PEP∗11, MFNP13,
MWT14, WTH15]. While these techniques are useful in order to
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observe relationships between the elements of a data set, they do
not show information related to its original attributes. In contrast,
the covered radial methods not only represent data samples, but
also depict data variables as customizable vectors/axes. Therefore,
our approach allows users to observe, as accurately as possible, re-
lationships between samples and data attributes. This allows per-
forming tasks such as searching for data with specific character-
istics (in directions suggested by the axis vectors), or visualizing
common attribute values that characterize a cluster. In this regard,
the essence and purpose of the plots related to radial axes methods
are different from other dimensionality reduction techniques.

The usefulness of employing a particular norm depends on the
information conveyed by the resulting visualization. Users should
bear in mind that the proposed methods should be used primarily
for exploratory purposes, in order to obtain an overview of the data,
and possibly find unexpected patterns or other information. In this
regard, using different norms provides analysts a greater array of
visualizations that might reveal these interesting and unexpected
structures or samples. Regarding efficiency, the method is interac-
tive when employing the `2

2 norm (used in PCB), since the map-
pings can be obtained in real time. In contrast, the `1 and `∞ norms
can generate interesting (nonlinear) mappings, but at the expense of
requiring more computational time, which is in the order of seconds
in our experiments.

We have developed a data visualization prototype in MATLABr

in order to evaluate the method’s potential for data analysis. Re-
garding the implementation, our approach is one of many meth-
ods that display data as points, simply requiring controls to ma-
nipulate the axis vectors, select a particular norm, fix the weights
for the variables, specify how estimation errors are visualized, etc.,
and could be included in most data visualization software packages
(see [HCL05, Udi05, STH08, FGL13]).

Finally, this paper has focused on the theoretical foundations of
the approach. Therefore, a broad analysis of user interaction is be-
yond its scope, and is left as future work. Nevertheless, we carried
out preliminary usability tests with the prototype tool, where users
were able to use our method in order to carry out usual exploratory
tasks related to radial methods such as SC (e.g., cluster analysis,
outlier and trend detection, or searching for data with particular
characteristics). We must point out that adaptable radial axes plots
should be used mainly for exploratory purposes, and to obtain an
overview of the data, since the estimates obtained through projec-
tions onto the axes are only approximations to the true attribute
values. In this regard, note that PCB use specific layouts of axis
vectors that allow to represent entire data sets as faithfully as pos-
sible (in a least square sense). Thus, the proposed technique should
be used as an alternative in tasks where such optimal estimation
accuracy is not required, and where user interaction is essential in
order to explore the data.
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