Rotation Invariant Vortices for Flow Visualization
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Abstract— We propose a new class of vortex definitions for flows that are induced by rotating mechanical parts, such as stirring de-
vices, helicopters, hydrocyclones, centrifugal pumps, or ventilators. Instead of a Galilean invariance, we enforce a rotation invariance,
i.e., the invariance of a vortex under a uniform-speed rotation of the underlying coordinate system around a fixed axis. We provide a
general approach to transform a Galilean invariant vortex concept to a rotation invariant one by simply adding a closed form matrix to
the Jacobian. In particular, we present rotation invariant versions of the well-known Sujudi-Haimes, Lambda-2, and Q vortex criteria.
We apply them to a number of artificial and real rotating flows, showing that for these cases rotation invariant vortices give better

results than their Galilean invariant counterparts.

Index Terms—\Vortex cores, rotation invariance, Galilean invariance, scientific visualization, flow visualization, line fields

1 INTRODUCTION

Vortices are among the most interesting structures in fluid flows, and
frequently they are visually analyzed. Although there is a common
understanding of what a vortex is, there is no unique definition featur-
ing all desired properties. The definition of vortex concepts is an ac-
tive field of research in a number of disciplines, such as mathematics,
physics, and CFD. In recent years, the visualization community con-
tributed new definitions of vortex concepts and efficient algorithms to
their numerical computation. A common useful property of many vor-
tex definitions is Galilean invariance, i.e., the invariance of the vortex
under an equal-speed translation of the underlying coordinate system.
In addition, there are a few approaches demanding the much stronger
property of objectivity of a vortex, i.e., invariance under any smooth
translation and rotation of the coordinate system.

This paper focuses on vortices in flows that are obtained by rotating
mechanical parts around a fixed and known axis. Examples are stirring
devices, helicopters, hydrocyclones, centrifugal pumps, or ventilators.
To illustrate the problem, consider a cylindrical container filled with
a fluid and an inserted propeller, as shown in Fig. 1(a). Rotating the
propeller with constant angular speed induces a fluid motion. We are
interested in its vortices. As depicted by a camera in Fig. 1(a), the
observer has a fixed position above the container, meaning that the
observer sees the propeller rotating and the container standing still. In
Fig. 1(b), we have the same configuration, but now the observer is “sit-
ting” on the propeller and rotating with it. This means that in the local
coordinate system of the observer the propeller is standing still while
the container is rotating. Computing vortices in the different reference
frames usually gives different results, even though the applied vortex
concepts are Galilean invariant. Which reference coordinate system
should be used to get “correct” vortices? A first assumption may be
that in areas close to the propeller configuration 1(b) gives better re-
sults because there the flow has a rotational speed similar to the pro-
peller, and that close to the wall of the container configuration 1(a)
is better if a no-slip boundary is assumed. This, however, raises the
question how to treat the areas between propeller and wall. Because
for those, the observer may have an optimal own rotation between zero
and the propeller. In fact, the choice of the rotating reference frame of
the observer has a great influence on the resulting vortices. How to
choose it correctly?
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Fig. 1. Rotating flow with different positions of the observer; (a) observer
has a fixed position and sees the propeller rotate; (b) observer is “sitting”
on the propeller and sees the propeller standing still.

This paper presents a solution for this problem: we propose new
vortex concepts for which the choice of the rotating reference frame
does not matter, i.e., vortex concepts that are invariant under the rela-
tive rotation of the observer. We call them rotation invariant vortices.
Starting with a formal definition of rotation invariance, we present a
simple and generic approach to transform a Galilean invariant vortex
concept to a rotation invariant one. In fact, it reduces to a slight modifi-
cation of the Jacobian, i.e., adding of a simple closed form matrix. We
apply this to several standard vortex concepts: cores of swirling parti-
cle motion [43], A, [16], and the Q criterion [15]. We demonstrate our
method on several rotating flows, showing that the rotation invariant
methods give better results than their Galilean invariant counterparts.

Notation

Given an n-dimensional (n = 2,3) time-dependent vector field
v(x,1) = v(x,y,[z,]t), we denote its partials as vy, Vy, [v,,]v;, respec-
tively. Interpreting the time-dependent field as an autonomous system
in space-time, we can write it as an (n+ 1)-dimensional steady field

p= (Y) We provide the following measures in both n-D space

and (n+ 1)-D space-time, where the latter is formally denoted by a bar.

Jacobian: The spatial Jacobian is J = Vv = (vy,vy[,v;]). The
J v
0" o
the eigenvectors of J. For n = 3 and the case that two eigenvalues are
complex, the eigenvector to the only real eigenvalue is e.

space-time Jacobian is J = Vp = ) We denote eq,e;],e3]

Acceleration: The acceleration in space is a = Jv +v;, the ac-
celeration is space-time is @ = J p. Note that a = (a,0)T.

Feature Flow Field: The feature flow field was originally in-
troduced to track critical points in space-time [41]. Here, we will use



it for general vortex tracking. We define it in space-time as f and in
space as f by division by its last component. For n = 2 we have [41]

~ det(v_\r7 Vt) 1 det(V\H Vt)
f= | det(vi,vy) | , £f= det(ve.vy) \det(vy,vy) )"
det(v,vy) et(vy,vy) 11 Vx

For n = 3 we have [43]

—det(vy,v;,v;)
det(vbvtvvx) — 1
—det(ve, v, Vy) | 77 det(vy, vy, V;)
det(vy, vy, v;)

- det(Vy~, Vz, Vt)
det(v,,v¢, Vi)
—det(v;, vy, Vy)

f=

Note that f can only be computed if J is non-singular. Excluding parts
with singular J from the computation is not a strong restriction be-
cause det(J) = 0 usually occurs on 2-manifolds in 3D only. Also note
that J has the eigenvectors %1), ‘302)’ {(e(;) ,} f, where f has the

corresponding eigenvalue 0. There is a simple relation
v—f=J'a M

that follows directly from the definitions of J, a and f, respectively,
but has, to the best of our knowledge, not been mentioned in the
literature.

Further, we denote the Parallel Vectors Operator [28] of two
3D vectors as ||, and the Coplanar Vectors Operator [43] of three
4D vectors as copl. If necessary, we make use of the V operator. I
denotes the identity matrix.

2 RELATED WORK

Vortices are among the most important features in fluid flows and for
this reason much research was devoted to their quantification, extrac-
tion and tracking. As there is no universal definition that captures all
desired properties, a number of different vortex measures have been
proposed in the literature [14, 15, 16, 31]. Overall, they can be cate-
gorized into region-based methods and line-based methods.

In region-based methods, volumes of vortex-like behavior are ex-
tracted, for instance by thresholding pressure, vorticity or helicity. In
the CFD community, region-based measures such as the Q criterion
by Hunt [15] and the A;-criterion by Jeong and Hussain [16] are well-
established. Biswas et al. [S] combined four local region-based vor-
tex detectors via majority voting, namely Ay, O, A [6] and I, [12].
Okubo [26] and Weiss [46] independently developed a criterion re-
lated to Q and more recently Haller [14] derived the objective M, cri-
terion. A region-based method finding nested vortices was developed
by Petz et al. [29]. Kasten et al. [22] extracted Galilean invariant vor-
tex regions by use of acceleration. Further, Kasten et al. [21] tracked
vortex merging events over time by use of combinatorial scalar field
topology. Combinatorial topology was also of concern in the vortex
core region detection of Jiang et al. [18].

Line-based methods, on the other hand, search for lines that parti-
cles rotate around. For this, Banks and Singer [1] suggested a curve
following velocity-predictor, pressure-corrector method. Sahner et
al. [34] extracted extremum lines of region-based methods, naming
the A, criterion and Q criterion by the use of feature flow fields [41].
Later, Sahner et al. [35] computed vortex and strain skeletons as ex-
tremal structures of derived scalar quantities. Schafhitzel et al. [36] set
further focus on the topology of A,-based vortex corelines.

For a 3D steady flow v, Sujudi and Haimes [39] defined the reduced
vorticity criterion, which considers the eigenvalues and eigenvectors
of the Jacobian J. A vortex coreline is present if a pair of complex-
conjugate eigenvalues exists (necessary condition for swirling) and the
eigenvector e to the remaining real eigenvalue fulfills: v — (vie)e = 0.
This method extracts the coreline of swirling streamlines in 3D flow
and has found many applications [10]. Peikert and Roth [28] formally
defined the parallel vectors (PV) operator, which returns the set of
points at which two vector fields are parallel. Using the PV operator

Sujudi-Haimes is equivalently expressed as v || Jv, i.e., v is parallel
to an eigenvector of J. A higher-order method was described later by
Roth and Peikert [31] to extract bent vortex corelines.

Aside from physically-based vortex definitions, geometric methods
can be found in the literature [27], which are useful for handling weak
vortices. With the curvature centre method and the winding-angle
method, Sadarjoen and Post [32] presented two geometric approaches
that are based on streamline geometry. Kohler et al. [23] presented
a semi-automatic method based on line predicates to assess vortices
in cardiac blood flow. For unsteady data, Bauer and Peikert [2], and
Theisel et al. [40] tracked the cores of swirling streamlines over time.
This makes sense for vortex tracking in instantaneous vector fields,
such as magnetic fields. Fuchs et al. [8] and Weinkauf et al. [43]
found that pathlines swirl around a different coreline than streamlines
and thus extended the method of Sujudi and Haimes in different ways
to find cores of swirling pathlines, i.e., the cores of particles in un-
steady flow. For this, Weinkauf et al. [43] derived a coplanar vectors
condition that reduces to a parallel vectors operation.

Aside from the geometric methods, all aforementioned automatic
extraction approaches have in common that they are local, and thus
easily parallelizable. However, it was shown that there are classes of
vortices that cannot be extracted by local methods, for instance attract-
ing vortices that move on non-linear paths. Thus, instead, integration-
based methods were developed, such as particle density estimation by
Wiebel et al. [48]. They proposed to inject a number of particles and
observe their attraction behavior over time. Weinkauf and Theisel [44]
found attractors by analyzing the Jacobian of a derived vector field in
which streaklines are tangent curves.

Another Lagrangian detector was developed by Cucitore et al. [7].
They extracted vortices by observing the neighboring particles around
a particle to test, i.e., they let the reference frame move with the
tested particle. Further, Lagrangian smoothing as proposed by Fuchs
et al. [9] and Shi et al. [37] can be applied to any local vortex detector
that was originally designed for steady flow by smoothing the extrac-
tion results along pathlines over time.

Orthogonal to vortex definitions are the verification of numerical
extraction results and their further processing for visualization. Jiang
et al. [17] presented a method to verify corelines based on the geom-
etry of streamlines. To improve the vortex core visualization, Garth
et al. [11] computed hull surfaces around vortex cores based on the
Rankine vortex model. Sahner et al. [34] proposed an iconic represen-
tation to indicate scale and extent. For a more detailed overview on
vortex extraction and visualization methods we refer to [25, 28, 30].

Aside from the definition of extraction methods that are invariant
under certain types of reference frame motion (Galilean invariance,
objectivity, rotation invariance), there is a thread of research on finding
a suitable reference frame in which the flow appears (nearly) steady. A
very common example is the subtraction of a mean flow (or a certain
percentage of it that is based on domain expert experience), which is
obsolete for Galilean invariant extraction methods [43]. More sophis-
ticated reference frame choices use decompositions of the flow to find
a harmonic vector field that can be subtracted to eliminate the gen-
eral motion. Since harmonic fields are divergence-free and curl-free,
the resulting field keeps its local divergence and rotation properties.
Wiebel et al. [49] decomposed the flow into a localized and a harmonic
component, and studied the localized component, with the restriction
that the localized flow is confined into a domain. The Helmbholtz-
Hodge decomposition (HHD) [3] decomposes a vector field into a
scalar potential (curl-free), a vector potential (divergence-free) and a
harmonic vector field. If the latter is present, the resulting compo-
nents and the uniqueness of the decomposition strongly depend on the
boundary conditions. Bathia et al. [4] used their natural HHD to ex-
tract vortices in the resulting (near-)steady flow. Aside from using the
HHD to perform a change of the reference frame, vortices have also
been characterized as extremal structures of the magnitude of the vec-
tor potential, e.g., by Tong et al. [42] and Wiebel et al. [47].
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Fig. 2. Creating a new vector field w by a domain transformation g.

3 DOMAIN DEFORMATION, GALILEAN INVARIANCE AND OB-
JECTIVITY

Much of the argumentation in this paper will be based on the concept
of domain deformation. In fact, we use it for two purposes: to formally
define the concept of Galilean invariance, objectivity and rotation in-
variance, and to find practical computations of rotation invariant vortex
measures.

3.1 Domain deformation

Given the vector field v(x,¢) in the spatial domain D and the temporal
domain 7', we consider a domain deformation as a differentiable map

g:DxT =D (2)

which is a diffeomorphism in its reduction to any ¢ € T. This means
that there is a unique inverse map h: D x T — D with

h(g(x,t),t):g(h(x,t),t):X 3)

for any (x,7) € D x T. Based on g, we define a new vector field in the
domain g(D) that transforms pathlines: for every pathline (q(¢),#) in
v, the transformed line (g(q(¢),),) is a pathline in w. This property
uniquely defines w as [24]

w(x,1) = (Vh(x,1)) " (v(h(x,1),1) —hi(x,1) @)

where Vh is the spatial gradient of h and hy is its derivative with re-
spect to time. We call w the domain transformed vector field inducted
by the domain transformation g. Figure 2 illustrates this. Eq. (4) can
be inverted to transform w back to v:

v(x,1) = (Vg(x,1)) " (w(g(x,1),1) — g (x,1)) ®)
3.2 Galilean invariance

A vortex measure is Galilean invariant if it is invariant under an equal-
speed translation of the underlying coordinate system. By using the
concept of domain deformation we can formalize this by

Definition 1 A vortex measure is Galilean invariant if for any trans-
Sformation

g(x,1) =X+ co+1¢ ©)
where ¢q is a constant point and ¢ is a constant vector, the following
holds: the vortex measure classifies a point (X,t) to be on the vortex in
v iff the vortex measure classifies the point (g(x,t),t) to be on a vortex
in the domain transformed field w.

Common local Galilean invariant measures are J and a. Any measure
that contains only J,a, their derivatives or a Lagrangian aggregation
of them over time is Galilean invariant as well. Examples are cores of
swirling particle motion [43], A;, Okubo-Weiss, FTLE and FSLE. For
n =2 we also have the following Galilean invariant conditions that are
all equivalent in areas of non-vanishing Jacobian:

flp < Jplp O
The equivalence of the four expressions in (7) follows directly from
Eq. (1), Ip = (2,0)T and p = (v,1)T. As a side note, it means that
for n = 2 the cores of swirling particle motion [43] and vortices by

vanishing acceleration [22, 20] are identical. For n = 3 there are the
following equivalent conditions for a non-singular Jacobian [43]:

copl(ﬁﬁ((‘;)) o el|lv—f o Jv-DO|v-£f (8

all of them giving Galilean invariant vortices.

a=0 & v-f=0 <

A

(a) Galilean invariance (b) Objectivity (c) Rotation invariance

Fig. 3. Invariance under different transformations of the coordinate
frame (i.e., the camera): Galilean invariant (left), objective (middle), ro-
tation invariant (right).

3.3 Objectivity

A vortex measure is objective if it is invariant under any smooth trans-
lation and rotation of the reference system. The formal definition has
the same form as Definition 1, except that (6) is replaced by

g(x,1) = Q(r) x+e(r) ©)

where Q(#) is a time-dependent rotation matrix and ¢(¢) is a time-
dependent translation vector. The strain tensor S = %(J +J T) is known
to be objective. Any Lagrangian aggregation of it or its derivatives
is objective as well, as done in the M, criterion in [14]. Figure 3
illustrates the concepts.

4 ROTATION INVARIANCE

To give a formal definition of rotation invariance, we consider a fixed
rotation center point Xg = (xO,yO)T for n = 2 or a fixed rotation axis
given by a point Xy and a normalized vector n for n = 3. Then, the def-
inition of rotation invariance has the same form as Definition 1 when
replacing (6) for n = 2 by

sin(o 7+ @)
cos(® 1+ ay)

cos(wt+
g(x.) = (—singwtnng >(X7X0)+XO (10
and for n =3 by

cos(wt+ay) sin(wt+awy) O
g(x,1) = Q' | —sin(@+ay) cos(wr+awy) 0]Qp (x—xXo)+xXo
0 0 1
an
where Q) is the rotation matrix transforming n to the z-axis and w, @y
are arbitrary scalars. Note that (10) and (11) describe rotations with
constant angular speed of the observer around a fixed point/axis. Also
note that up to now all introduced domain transformations (6), (9),
(10) and (11) describe isometric deformations, i.e., they transform a
square to a square of the same size.

Clearly, standard Galilean invariant vortex concepts like cores of
swirling particle motion, A,, or Q are generally not rotation invariant.
We describe now a simple generic approach to transform a Galilean
invariant concept to a rotation invariant one. For n = 2, we introduce
a non-isometric domain deformation g, (x,r) and its inverse h,(x,r)

arctan X=X B cosx
wix) = (T8 ) e =xoty(Sor) a2

along with its domain transformed vector field w,. Eq. (12) describes
a domain transformation to polar coordinates. Instead of applying a
Galilean invariant vortex criterion to v at (x,7), we apply it to w, at
g,(x,?). In other words: we domain transform v to polar coordinates,
do the vortex extraction there, and transform the resulting vortex struc-
tures back to the original Cartesian coordinates. Note that this gives
in general different vortex structures than an application of the vortex
measure in Cartesian coordinates because the non-isometric domain
transformation induces a non-linear transformation of the Jacobian.
Also note that this way we obtain a rotation invariant vortex measure if
the vortex measure applied to w), is Galilean invariant: an equal-speed
rotation around X in the domain of v corresponds to an equal-speed



translation of the coordinate system in the domain of w,. Hence, a
Galilean invariant measure in w;, becomes a rotation invariant mea-
sure in v.

Although the domain transformation to polar coordinates is the the-
oretical solution of our problem, it creates new practical problems con-
cerning the computation of the Jacobian in polar coordinates. In par-
ticular, it is unclear on which discretization to compute the Jacobian
in polar coordinates since the domain transformation g, maps cells
with planar faces in Cartesian coordinates to cells of different size and
density with non-planar faces in polar coordinates. To address this
problem, we present an approach to compute the (modified) Jacobian
in Cartesian coordinates only, without a transformation to polar coor-
dinates. For this, we can directly use the grid discretization coming
from the simulation. To introduce this, we keep in mind that most vor-
tex measures are computed by a certain combination of v, v, and J.
This means that after the domain transformation we have to consider
W (8p(x,1),1) and its Jacobian J, (g, (x,1),1) = V(W,(gp(x,1),1)). In-
stead of considering w,, and J,, we transform them back to Cartesian
coordinates

Vr(x,1) = (Vegp(x,1) " - wp(gp(x,1),1) (13)
4, 0
Vrt(th):(Vg[?(Xat)) I'Ewp(gp(XJ)J) (]4)
Jo(x,1) = (Vep(x,1)) " - V(Wp(gp(x,1),1))- (15)
Fortunately, (13)—(15) have a simple closed form:
V, =V (16)
v,
Ve = W =V a7
J,:J+$RHRT:(vn,vy,) (18)
with
— 0 1
a=lx=xl =200 = (O ) a9
and the 2D matrices
. . —vIr —vTr,,
R=(r,r) , H= (VTI’p 0 ) . (20)

See the appendix for a derivation. Egs. (16)—(18) have an interesting
meaning: in order to transform a Galilean invariant vortex measure to
a rotation invariant one, we only have to replace J by J,. Note that J,
is obtained by adding a closed-form matrix to J, meaning that we do
not have to worry about grid discretization in a transformation.

From the rotation invariant Jacobian, we directly get rotation invari-
ant acceleration and feature flow field:

ar:Jr V+V; ) ﬁr:jrﬁ (21)
with
_ J Vv,
and
£ () oL (det,
= ts Vxr y Ar = det(vxr7v_)7r) det(V;,er) '

det(vy,,vy,)

The case n = 3 is similar and a straightforward extension of the case
n = 2. Instead of a domain deformation to polar coordinates, we do a
deformation to cylindrical coordinates around the axis given by xq,n.
A transformation of the Jacobian back to Cartesian space gives the
rotation invariant Jacobian

1
J =7+ 7 RHRT = (eravy,aaVZr)

n
. v(x,1) r
v(x,t) X r g\’\? o r,
//’ ‘\ ,’//
o
- Ip bt

Fig. 4. Setup for computing the rotation invariant Jacobian for n = 2 (left)
and n = 3 (right).

with b bein% the point on the rotation axis with shortest distance to X,

ie., (x—b)'n=0, and
—-b
d=|x=b| , r:xd , Ip=rxn (23)
and the 3D matrices
—vIr —vTr, 0
R=(rp,rn) , H= | vTr, 0 0 (24)
0 0 0

This gives for rotation invariant acceleration the same forms (21)—(22)
as for n = 2, and for the rotation invariant feature flow field we have

- det(v)'r7VZr>Vf)

det(VZth Var) _ ;
- det(Vf,er,Vyr) " det(er,Vyr,VZr)
det(vxrvvyravzr)

- det(vyrvvzrvvt)
det(Vervt 7VXr)
—det(v;, vy, Vy,)

f=

Figure 4 illustrates the setups for 2D and 3D.

5 ROTATION INVARIANT VORTEX MEASURES

We can now propose particular rotation invariant vortex measures by
inserting J, in their respective definitions.

5.1 Rotation invariant cores of swirling particle motion

For n = 2, any condition of (7) gives Galilean invariant cores of
swirling particle motion. For rotation invariant cores of swirling parti-
cle motion we propose any of the following equivalent conditions:

a,=0 < v-f=0 < f[p < Jplp (25

For n = 3, the Galilean invariant conditions are in (8). In addition to
this, we propose a new Galilean invariant vortex measure:

Viv=10)-(v=0 [ (v—-19), (26)

i.e., we apply Sujudi-Haimes to v —f. In case of vortices moving along
an equal-speed translation, we can assume Vf = 0, meaning that (8)
and (26) show the same vortices. However, in the rotation invariant
case, (26) performs better, as shown later in Section 6.4. We propose

Viv—1£)-(v—1£) | (v—£.) 27

for rotation invariant cores of swirling particle motion.

5.2 Rotation invariant region-based methods

For the definition of rotation invariant region-based measures, we con-
sider the decomposition of the rotation invariant Jacobian

Jr = Sr + Qr (28)

into the rate-of-strain tensor S, = %(J r +JI) and the vorticity tensor
Q, = %(J - Jf) Following [16], we define the rotation invariant A,,
criterion by considering the second-largest eigenvalue of S% + Q%:

Aoy =22(S2+Q2) <0. (29)



Similarly, we follow [15] and define the rotation invariant Q, crite-
rion
1
0= 5 (2= I1s//1?) > 0. (30)
which characterizes vortices as regions in which the Euclidean norm

of the rotation invariant vorticity tensor dominates that of the rotation
invariant rate-of-strain tensor.

6 RESULTS

In the following, we demonstrate the rotation invariant vortex mea-
sures. We use several synthetic data sets and study two real-world
flows.

6.1 Beads

The BEADS FLOW was reported by Wiebel et al. [48] and has previ-
ously been among the most challenging benchmarks for vortex extrac-
tion. An analytic approximation to it was given in [44]:

v(x,y,1) = (_(i_ % sin(t)) — (x:icf)s(t))) . G1)

(c) Galilean invariant
coreline with pathlines.

(d) Rotation invariant
coreline with pathlines.

(e) Images (c) and (d)
shown together.

Fig. 5. Local coreline extraction in the standard BEADS flow in (a), and
its divergence-free version in (b), both visualized in space-time where
time denotes the vertical axis. Images (c)—(e) show close-ups of (b),
with the pathline seeds being depicted by colored spheres. Green core-
lines are obtained by the Galilean invariant cores of swirling particle
motion (wrong result), whereas blue corelines are computed with our
rotation invariant extension (correct result). In image (b)—(e), pathlines
are seeded on the extracted corelines, showing that green pathlines
(seeded at Galilean invariant coreline) spiral away, whereas blue path-
lines stay at the rotation invariant coreline.

The flow is defined in the domain DxT = [-2,2]?x[0,27%]. Pre-
viously, all local vortex extractors failed and only integration-based
methods could find the solution [44, 13], such as particle density es-
timation [48, 13] or cores of swirling streaklines [44]. As shown in
Fig. 5(a), our rotation invariant method is the first local method that
finds the correct coreline, which was identified by Weinkauf et al. [44]
as the pathline x(7) = %(sin(t) +cos(t), —cos(t) +sin(r))T.

We go a step further and consider a modification of the BEADS
FLOW that cannot be handled by integration-based particle density es-
timation, as it is divergence-free. Thus, neither standard local nor
integration-based methods are applicable. That is, a center moving

on a circle:
—2y+ %sin(r)
1= 3 32
V(Jﬂ% ) <2X7%COS(Z) ) ( )
again defined in the domain DxT = [—2,2]?>x[0,27]. Fig. 5(b) de-
picts the rotation invariant coreline and swirling pathlines as context,
showing that our method delivers correct results in this data set, too.

Here, the correct coreline is the pathline x(r) = 2 (cos(t), sin())T.

6.2 Four Rotating 2D Centers
The FOUR CENTERS (SC) data set is based on the scalar field

s(x,y) = 3xy~efxziV2 (33)
and is defined in the domain D = [—2, 2]?. Its co-gradient vector field
contains four centers. The abbreviation SC stems from streamline
core, as we construct the unsteady flow by rotation of the stream-
lines, which prescribes the location of the streamline cores. That is,
over time, we slice-by-slice rotate the underlying scalar field around
xo = 0, considering it in the temporal domain T = [0, 27]:

Fs&y)

v(x,y,t) =
) <—ais<)a,y’>>
with (;C;) = (_C(S)ISIEZ(E) zg;((?)) (i) Equivalently, the flow can be
constructed by adding a center with the angular velocity of the above
rotation, and transforming the flow using Eqs. (5) and (10) from the ro-
tating reference frame into the fixed reference frame. While the steady
field contains four streamline vortex corelines, the rotating system ex-
hibits only two pathline cores, as shown in Fig. 6. This cancellation of
cores is due to the addition of the center in the analogous flow in the
rotating reference frame. We use this flow to demonstrate the rotation
invariance of our method in Fig. 7. A direct application of Galilean
invariant pathline cores [43] (which are for 2D unsteady flows iden-
tical to Sujudi-Haimes [39] in space-time), as in Fig. 7(a) does not
find the correct rotation centers, as shown by green pathlines leaving

(34

Fig. 6. Space-time visualization of the 2D unsteady FOUR CENTERS
(SC) flow, with the camera viewing along the time axis and gray path-
lines as context. Green corelines are obtained by cores of swirling mo-
tion, the blue corelines are their rotation invariant counterparts. As visi-
ble by the green and blue pathlines, only rotation invariant cores exhibit
swirling motion in their vicinity.



(a) Galilean invariant pathline cores (b) Galilean invariant pathline cores (c) Rotation invariant pathline cores (d) Rotation invariant pathline cores

(original reference frame) (modified reference frame)

(original reference frame)

(modified reference frame)

Fig. 7. The 2D unsteady FOUR CENTERS (SC) flow in space-time. Direct application of (Galilean invariant) pathline cores [43] in (a) does not reveal
the correct corelines. It does produce correct corelines after an appropriate change of the reference frame (b). Our rotation invariant pathline cores
in (c) and (d) find the centers of swirling motion in rotating systems regardless of the reference frame.

the coreline. In this data set, a prior change to an appropriate refer-
ence frame, as in Fig. 7(b), removes the rotational movement, making
Galilean invariant pathline cores applicable. In this paper, we extend
existing Galilean invariant vortex core extractors to become rotation
invariant, which extracts the correct rotation centers, regardless of the
reference frame, see Figs. 7(c) and 7(d).

Next, we construct another unsteady vector field named FOUR
CENTERS (PC) by prescribing the flow in the rotating frame as:

—£.e 252 =
W()?,)?,l‘):( * : 2 (2y 1)>

with coordinates in the rotating frame (%,9)T = g(x,7) and rotate it
using Egs. (5) and (10) with @ = 1 and @y = 0 into the fixed frame.

With this, we prescribe the rotation of pathline cores (PC). In the
fixed frame, the centers vanish, as visible in Fig. 8 (left). This time,
we find four rotation invariant pathline cores, but only two (wrong)
cores with the Galilean invariant counterpart. Our rotation invariant
coreline extraction finds the correct cores of swirling pathlines in both
unsteady flows (SC) and (PC).

Next, we compare the Galilean invariant region-based vortex crite-
ria A and Q with their rotation invariant versions A;, and Q, in the
flow with prescribed pathline cores (PC), i.e., we know that there are
four vortices to expect. Fig. 9 (left) shows an overview of the meth-
ods, containing Galilean invariant pathline cores (green), rotation in-
variant pathline cores (blue), Galilean invariant region-based methods
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Fig. 8. FOUR CENTERS (PC) flow with prescribed centers in the rotat-
ing reference frame in space-time. In the fixed reference frame (left), the
four centers partly vanished. Corelines were extracted in the fixed ref-
erence frame. The right image shows a LIC slice of the rotating frame,
displaying the four centers.

(red) and rotation invariant region-based methods (yellow). The top
right image shows the Galilean invariant techniques, which detect only
two cores. The green pathlines spiral away from the vortex corelines,
showing that the classic Galilean invariant method delivers incorrect
results. The bottom right image shows our rotation invariant exten-
sions, which extract four vortex cores, as expected. The blue pathlines
show that the rotation invariant vortex coreline is indeed the correct
coreline.

6.3 Two Spiraling 2D Centers

A major strength of rotation invariance is that the angular speed of
the underlying rotation must not be known in advance to obtain accu-
rate extraction results. This is very helpful for non-linear rotations, in
which the underlying rotation is unknown or difficult to describe. An
example is a system in which the angular speed decays or increases
with distance to the center of rotation. We built a synthetic test data set
to demonstrate such situation. We place centers at (1,0)T and (2,0)T
in the rotating reference frame:

c oy =2y
w50 = (423 — 1842 4268 — 12) (36)

Fig. 9. Region-based methods in the FOUR CENTERS flow in space-
time. Left: Overview image. Top right: Galilean invariant methods (two
cores). Bottom right: Rotation invariant methods (four cores). Opaque
isosurfaces show A, (top) and A,, (bottom) and transparent isosurfaces
depict Q (top) and Q, (bottom). Here, 0 and A, deliver similar results.
The same applies for Q, and A,,.



(a) Streamline core by Sujudi-Haimes
att = 1, streamlines in background.

Fig. 11.

(c) A direct extension of [43], i.e
J.(v—1£,) || (v—£) is incorrect.

(b) Streamline core by Sujudi-Haimes
at t = 4, streamlines in background.

Vortex cores in the ROTATING CENTER flow, with pathlines starting or ending at the corelines. Figs.

(d) Our correct rotation invariant path-
line cores atf = 1 and t = 4.

(a) and (b) depict the flow at two

instantaneous time steps, with streamlines in the background. A direct extension of cores of swirling particle motion yields wrong results (c). Image

(d) shows the rotation invariant pathline cores atr =1 (dark blue) and r = 4

(dark purple). Pathline ribbons from ¢ = 1...4 connect the two corelines,

showing both the coreline’s movement path and the rotational movement of particles by the ribbon twist.

with coordinates in the rotating frame (£,$)T = g(x,?) and transform
it using Egs. (5) and (10) with @ = 0.3(x> +y?) and @y = 0 into the
fixed reference frame. We consider the flow in the domain D x T =
[-2.5,2.5] x [-=, 7], as shown in Fig. 10. Note that in this flow
the distance of a particle to the center of rotation remains constant,
and thus a particle’s angular speed does not change. It can be seen
that with lower angular speed (closer to the global rotation center) the
difference to cores of swirling particle motion becomes smaller, as the
vector field is more steady, i.e., the temporal derivative ‘é}' is smaller.
As shown by the pathlines, our rotation invariant method accurately
extracts the vortex cores of swirling pathlines.

6.4 Rotating 3D Center

In the following, we construct a time-dependent 3D vector field. At
time ¢ = 0, it contains a center with its coreline through the points
(1 0,0)T and (0,1,1)T. (At r = 0, this coreline can be found us-
ing Sujudi- Halmes) Over time, we rotate the center globall _[y slice-
by-slice around the z-axis, i.e., Xxp = 0 and n = (0,0, 1) The
resulting field in a fixed reference frame is deﬁned in the domain
DxT =[-5,5)3 x[0,27] as:

? (zcos(t) +zsin(t) — cos(r) —y)
?(zcos(t) — zsin(¢) +sin(r) +x)
- ? (xcos(t) +ycos(t) +xsin(t) — ysin(r) —2)

Fig. 11 depicts the rotating center and the vortex corelines therein. In
Fig. 11(a) a streamline core is shown for t = 1 with pathlines seeded at

v(x7y7z7t) =

Fig. 10. Two SPIRALING CENTERS in space-time with their center posi-
tions prescribed in the rotating reference frame. The left image visual-
izes the fixed reference frame, which was used to extract the corelines
shown on the right. In the right image, pathlines were released from
the corelines, and a LIC slice of the rotating reference frame is shown,
displaying the two centers.

the coreline and integrated up to ¢t = 4. Similarly, Fig. 11(b) contains
the streamline core of t+ = 4, with backwards integrated pathlines to
t = 1. Comparing both, we see that pathlines seeded from one core-
line do not reach the other coreline. Thus, the traced particles have
not been seeded at a true vortex core. A direct extension of cores of
swirling particle motion [43] does not result in the correct corelines, as
shown in Fig. 11(c). With our proposed generalization (27), the rota-
tion invariant pathline cores can be found. This is demonstrated by the
pathline ribbons that were seeded on one coreline and have reached
the other. Further, their twist shows the swirling behavior of nearby
particles. Note that this vector field has no Galilean invariant pathline
cores, since det(J) = 0.

6.5 Centrifugal Pump

Our first real-world data set was subject of the IEEE Visualization
Contest 2011. The data is courtesy of the Institute of Applied Me-
chanics, Clausthal University, Germany and was made available by
Dipl. Wirtsch.-Ing. Andreas Lucius. We consider an unsteady 2D
slice (z = 0.01) of the simulated flow based on the DES turbulence
model, which is already provided in a rotating reference frame. Com-
mon practice is to track vortices in a reference frame rotating with the
angular velocity of the blades. As we will show, this rotating frame
is not ideal as the vortices are moving in the blank areas between the
blades. In fact, our rotation invariant extractor finds cores of better
quality. Fig. 12(a) depicts cores of swirling particle motion and our
rotation invariant pathline cores.

In the following, we explain how we evaluate the quality of the
extracted corelines. Unfortunately, there is no ground truth location,
since there is no universal vortex measure that can be considered best.
There is, however, a rather commonly desired coreline property: Core-
lines should ideally be pathlines, since they would then represent par-
ticles that other particles swirl around, and hence, we get cores of
swirling particle motion. We measure this property by the tangent
alignment with the flow. We define the tangent alignment 1.(t) of a
coreline ¢(f) as a scalar line attribute that is defined as the absolute
value of the dot product between (space-time) vector field p and the

tangent of the space-time coreline ¢(r) = (c(;)) (both normalized):

o ' €(r),r) | de(e)/dr
p(e(),2)l llde(z)/ de]
As visible in Fig. 12(b), Galilean invariant cores of swirling particle

motion have a poorer tangent alignment than our rotation invariant
pathline cores, shown in Fig. 12(c).

&)

6.6 Rotating Mixer

Our second real-world data set features a rotating mixer, which was
provided by Gabor Janiga, who is with the Institute of Fluid Dynam-
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(a) Galilean (green) and rotation invar. (blue) cores.
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(b) Galilean invariant - Tangent alignment

(c) Rotation invariant - Tangent alignment
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(d) Galilean (green) and rotation invar. (blue) cores.

(e) Galilean invariant - Tangent alignment

(f) Rotation invariant - Tangent alignment

Fig. 12. Vortex cores of a CENTRIFUGAL PUMP in a rotating reference frame in space-time. While Galilean and rotation invariant vortex cores are
similar (a), the Galilean invariant cores (b) have a poorer tangent alignment than our rotation invariant counterpart (c). The bottom row (d)-(f) shows

a close-up of the region highlighted in (a).

(a) isosurfaces Ay = —60 and A, =

—60 (b) isosurfaces Q =40 and Q, = 40

Fig. 13. Region-based techniques in the ROTATING MIXER data set.
Backfaces of the red isosurfaces depict the standard Galilean invariant
A, and Q criteria. The frontfaces of blue isosurfaces show our rotation
invariant counterparts 4,, and Q,.

ics and Thermodynamics, University of Magdeburg, Germany. This
vector field is given in a fixed reference frame. Fig. 13 displays isosur-
faces of the Ay, O, A;, and Q, criteria, for the time step r = 0.004. The
left image shows Galilean invariant (red) and rotation invariant (blue)
isosurfaces for Ay = —60 and A,, = —60, respectively. With the Q
criterion we examined very similar results for Q = 60 and Q, = 60.
The right image depicts Galilean invariant (red) and rotation invariant
(blue) isosurfaces for Q = 40 and Q, = 40. Similarly, A, = —40 and
A2, = —40 give similar results. For such turbulent real-world flows a
ground truth is unknown, and thus it is hard to quantify which vortex
extraction method works better. We observed that Galilean invariant
and rotation invariant surfaces differed only slightly in their strength
(isovalue). We found the largest differences in the proximity of the
mixer geometry. Apparently, those areas are more influenced by rotat-
ing motion. The cylindrical mixer geometry itself becomes apparent
too, but is largely a boundary artifact.

7 IMPLEMENTATION AND EVALUATION
7.1 Coreline Extraction and Filtering

As shown earlier, our rotation invariant corelines are expressed by
the parallel vectors operator. Peikert and Roth [28] explained several
methods for PV extraction, which can be applied here. For all exam-
ples shown in the paper, we used the parallel vectors implementation
of the visualization toolkit Amira [38]. The computation involves the
setup of the vector fields to test for parallelism and a prior test for
presence of complex eigenvalues in the rotation invariant Jacobian J,,
which is a necessary swirling condition. After extraction, a tangent
alignment filter using Eq. (37) is applied to remove lines that are not
tangential enough to the flow, followed by subsequent joining of close
line segments to fill gaps and a final thresholding of lines by length
to remove the remaining noise. All these filter steps are considered
as standard procedure in local coreline extraction methods. There are
a number of alternatives for closed PV line extraction including the
curve-following predictor-corrector method of Peikert and Roth [28]
or the use of stable feature flow fields as in Weinkauf et al. [45]. For
cell-based extractions, Ju et al. [19] recently proposed a robust parity
test to determine the number of PV points per cell face.

7.2 Performance

Our modifications to enable rotation invariance are only local and
rapidly computed. They are much faster compared to the actual paral-
lel vectors extraction in the line-based techniques and the computation
of eigenvalues in the region-based techniques. Thus, the performance
is very similar to standard Galilean invariant techniques. Space-time
grid sizes and extraction times are shown in Table 1 for our rota-
tion invariant pathline cores. The timings are measured on a system
with an Intel Core i7-2600K CPU with 3.4 GHz and 24 GB RAM.
The computation time linearly depends on the number of voxels with
complex-conjugate eigenvalues in the Jacobian. For instance, in the
FOUR CENTERS (SC) flow more voxels could be skipped than in the
BEADS flows, due to the prior test for swirling behavior. Timings
for the region-based techniques are shown in Table 2. As the Q,



Data set Grid size Extraction time
BEADS (STD) 64 x 64 x 64 20.7 sec.
BEADS (DIV.-FREE) 64 x 64 x 64 20.9 sec.
FOUR CENTERS (SC) 64 x 64 x 64 4.5 sec.
FOUR CENTERS (PC) 128 x 128 x 128 55.2 sec.
SPIRALING CENTERS 128 x 128 x 128 55.6 sec.
ROTATING CENTER 64 x 64 x 64 20.2 sec.
CENTRIFUGAL PUMP 512 x 512 x 80 7.5 min.

Table 1. Total computation time of rotation invariant pathline cores.

criterion comes almost for free with the computation of A,, because
0y = —%(llr + A2, + A3,), we list combined timings, i.e., the time
required to compute the eigenvalues and from those A,, and Q,.

8 DISCUSSION AND LIMITATIONS

Simplicity: Our technique to compute rotation invariant vortices is
extremely simple: just add a closed form matrix to the Jacobian and
feed the vortex extractor with it. There is virtually no computation
overhead or performance and accuracy drop in comparison to the
original methods.

Relation to objective vortices: Clearly, an objective vortex is
also rotation invariant: objectivity is a much stronger property than
rotation invariance. However, existing objective vortex measures
can be “too strong” to find expected vortices in a standard data set.
An example can be found in [33], where the M, criterion of [14] is
applied to a cylinder flow: the objective M, does not detect the typical
von Kdrmdn vortex street behind the cylinder. In particular, we are
not aware of an objective measure that detects the correct vortex in
the divergence-free BEADS data set.

Restriction to rotating flows: Our technique makes only sense
for flows that are induced by a rotating movement around an axis. We
think that this class of flows is large enough to make our approach
relevant. Note that moving the rotation center/axis to infinity lets
J, converge to J and therefore converges to a Galilean invariant
technique. Another issue is that for our technique one must know the
location of the rotation point/axis. We do not consider this as a strong
restriction because this information usually comes with the data set.

No Galilean invariance: We stress again that our technique is
not Galilean invariant anymore. We argue that, for the data con-
sidered here, rotation invariance is more important than Galilean
invariance. The better vortex structures shown in this paper confirm
this assumption.

9 CONCLUSIONS
In this paper, we made the following contributions:

e We identified rotation invariance as desirable property for vortex
measures in flows that are induced by rotating parts.

e We gave a formal definition of rotation invariance.

e We have shown an extremely simple way to transform a Galilean
invariant measure to a rotation invariant one: we simply have
to add a closed form matrix to the Jacobian and feed the vortex
extractor with it.

e We proposed rotation invariant versions of cores of swirling par-
ticle motion, A, and Q.

e We have applied them to a number of data sets, showing that
our technique gives better vortices than the Galilean invariant
measures. In particular, our technique is — to the best of our
knowledge — the first local method that finds the exact core in
the standard and divergence-free BEADS flow.

In addition to this, the paper contains some minor contributions:

Data set Grid size Extraction time
ROTATING MIXER 256 x 256 x 128 36.5 sec.
FOUR CENTERS (PC) 256 x 256 x 256 2.3 min.

Table 2. Total computation time of rotation invariant ,, and Q,.

e We have formulated a simple relation between v, J, a and f that
holds both for n = 2 and n = 3, namely Eq. (1).

e We have shown that for n = 2, acceleration-based techniques
[22, 20] and cores of swirling particle motion [43] give the same
corelines for non-singular J.

e For n =3, we proposed a slight variation of the cores of swirling
particle motion [43] in (26). In fact, this paper proposes to apply
Sujudi-Haimes on v —f. While this does not affect the results in
the Galilean invariant case, it improves the results for the rotation
invariant case.
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APPENDIX

In the following, we briefly show how Egs. (16)—(18) are derived from
Eqgs. (13)—(15). First, Eq. (16) follows from (13) and
W[’(g[?(xvt)-‘t) = (Vh[?(gp(xvt)vt))il 'V(h[;(g[,(X,l’),l’),t) (38)

which follows from (4).
h,(g,(x,1),1) = X, we get

V(hy(gp(x,1),1)) = Vhy(gp(x,1),1) - Vep((x,1),1) = Vx =T (39)

from which we get

Applying the chain rule to the identity

(Vhp(gp(x7[)7t))7l = VgP((th)7t)

This and (13) give (16). Eq. (17) follows from the fact that g, and h),
do not depend on . To show (18), we apply the chain rule to (15):

(40)

Jr(X7l) = (Vgp(xvt))il ) pr(gp(x>t)>t) : Vgp(xvt) (41)
and insert
*(y*y‘og ()C*Jfo)2
Ve = [ el R (42)
[lx—xoll [[x—xol|

which follows from (12). See the additional material for an extended
Maple proof.
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