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a b s t r a c t 

Most reacting and two-phase flows of practical interest are turbulent but take place at low Mach num- 

bers or under incompressible conditions. In order to investigate the properties of such complex flows 

with high accuracy but acceptable computing times, a suitable tool for Direct Numerical Simulations 

(DNS), called DINOSOARS, has been developed. The present article describes the numerical components 

and methods implemented in this code, together with a detailed verification and validation phase, and 

finishes with two examples of full-scale simulations. We hope it might be useful as a “verification and 

validation guideline” for other researchers working on DNS of reacting flows. Since applications of grow- 

ing complexity are considered by DNS, a Direct Boundary Immersed Boundary Method (DB-IBM) has 

been implemented, allowing a description of arbitrary geometries on a fixed, but possibly refined, Carte- 

sian mesh. A direct force IBM is implemented as well in DINOSOARS in order to resolve large moving 

spherical particles (much larger than the Kolmogorov scale) on the grid. Particles below the Kolmogorov 

scale are treated as point particles, taking into account additionally heat and mass transfer with the con- 

tinuous flow. The efficient parallelization of the code relies on the open-source library 2DECOMP&FFT. 

The underlying Poisson equation is solved in a fast and accurate manner by FFT, even for non-periodic 

boundary conditions. The flexibility of DINOSOARS makes it a very promising tool for analyzing a variety 

of problems and applications involving turbulent reacting and/or two-phase flows. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

The current paper describes the third-generation DNS code

eveloped at the University of Magdeburg, building on top of the

xperience of our group, first with the PARCOMB family [1,2] , then

ith the code called π3 [3,4] . Originally, the name of DINOSOARS

tood for “DIrect Numerical, high-Order Simulation and On-the-fly

nalysis of Reacting flows and Sprays,” though solid particles

nteracting with turbulence are now considered as well. 

DNS of gaseous reactive flows has a long history of success

ver the last three decades, as documented for instance in [5–12] .

evertheless, it remains a hot research topic leading steadily

o new publications, e.g., [13–16] ], since many issues remain

nsolved for this challenging problem involving extremely high
∗ Corresponding author. Tel.: +493916712427. 
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omputational requirements. Besides considering pure gaseous 

ames, reacting sprays have also been considered extensively by

NS, see for instance [17,18] . 

Our research group has always specialized in DNS studies tak-

ng into account detailed models to describe kinetic processes. As

iscussed later in this paper, considering complex molecules such

s n -heptane or ethylene, further increases the computational bur-

en in comparison to non-reacting flows or to approximations rely-

ng on single-step chemistry. To add to this challenge, such studies

nly make sense when describing with a similar level of accuracy

ll relevant thermodynamic and molecular transport proper-

ies, such as diffusion coefficients and viscosity. In the end, the

esulting systems can only be solved on parallel supercomputers. 

Finally, there is a growing need for applying DNS to configu-

ations involving semi-complex geometries, while keeping a very

ow numerical dissipation. This has been answered in DINOSOARS

y implementing Immersed Boundaries. 

http://dx.doi.org/10.1016/j.compfluid.2016.03.017
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.03.017&domain=pdf
mailto:abouelmagd.abdelsamie@ovgu.de
http://dx.doi.org/10.1016/j.compfluid.2016.03.017
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Considering the challenges that must be met and the process

conditions relevant for practical purposes, three strategies have

been combined in DINOSOARS to keep acceptable computational

times for DNS of reacting and/or two-phase flows 

• Considering that most processes involve incompressible flows

or low Mach numbers, only these two configurations have been

considered. A large speed-up can be obtained by using a l ow-

Mach number solver compared to a fully compressible one [19] .
• The previous approach removes timestep constraints associated

with acoustic waves. For reacting flows, the timestep then be-

comes classically controlled by fast kinetic processes. In order

to solve this issue and obtain a stable, high-order integration

in time, a semi-implicit time integration has been successfully

implemented. 
• The third, classical strategy is to rely heavily on paralleliza-

tion. For this purpose, coupling DINOSOARS with a recent open-

source solution, 2DECOMP&FFT, was found to be very efficient.

However, the major issue for incompressible and l ow-Mach

solvers is to implement a fast parallel solver for the Pois-

son equation coupling pressure and velocity. For this purpose,

it was finally possible to develop and implement an innova-

tive FFT-based approach, even for non-periodic boundary con-

ditions, so that even this bottleneck could be released. 

While the direct simulation is notably very difficult in itself,

the analysis of the obtained results is also very challenging, in par-

ticular when considering that it is impossible to store all variable

values at all grid points for all timesteps. Therefore, an on-the-fly

analysis is implemented as well in DINOSOARS, as discussed later. 

This paper is organized as follows. After introducing the gov-

erning equations and the physicochemical parameters appearing

in these equations, all models and algorithms implemented in

DINOSOARS for solving the resulting equation system are pre-

sented, including parallelization issues. Then, code performance

is quantified and a systematic verification is presented. Finally, a

successful validation of the code is proposed, opening the door for

two exemplary, full-scale simulations. 

2. Governing equations 

DINOSOARS has been conceived from the start as a flexible

tool, allowing for a highly accurate investigation of turbulent flows

at low and intermediate velocities. Thus, it involves a variety of

algorithms, models and of equations. Due to space limitations, it

is impossible to discuss everything in great detail. Only the most

important aspects will be described in what follows, separating in

particular between reacting and non-reacting flows. The l ow-Mach

number approach is used in DINOSOARS for reacting flows, since

most applications involving chemical reactions and combustion

indeed take place at l ow Mach numbers, Ma � 1 [20] . For non-

reacting flows, incompressible transport equations are considered

instead. For both conditions (reacting and non-reacting), either

single-phase or two-phase turbulent flows can be described with

DINOSOARS, as described later. Since DINOSOARS will rely on

external libraries written in dimensional form, it has been written

from the start as a dimensional code as well, using SI units. 

3. Low-Mach number formulation for reacting flows 

In this case, the pressure in the flow is nearly uniform and the

coupling between the fluctuating pressure and the density can be

neglected. The present formulation is based on an incompressible

but dilatable approach, first described for reacting flows by [21] .

Pressure is then split into a spatially homogeneous thermodynamic

pressure p ( t ) and a dynamic fluctuating pressure ˜ p (x, t) , where

˜ p (x, t) � p(t) . The resulting equations still contain vorticity and
ntropy waves, but acoustic waves have disappeared. Therefore,

he timestep is no longer limited by acoustic times, but only by

haracteristic convection, diffusion or reaction time scales, leading

o a considerable speed-up [19] . 

The conservations equations underlying the low-Mach number

pproximation for an ideal gas involving N s chemical components

an be summarized in compact form as follows: 

 t (ρ) = −∂ i (ρu i ) , (1)

 t (ρu i ) = −∂ i ̃  p + R m,i , (2)

 t (T ) = ϑ + R T , (3)

 t (Y k ) = � k + R Y k , (4)

= 

p W 

R T 
, (5)

ubject to the additional condition for global mass conservation 

N s 
 

k =1 

Y k = 1 , (6)

here ρ , u i , ˜ p , p, T, Y k , N s , R and W are the mixture density,

 th component of flow velocity, fluctuation pressure, thermody-

amic pressure, temperature, k th species mass fraction, number of

pecies, ideal gas constant, and mixture mean molecular weight,

espectively. The right-hand side of the momentum equation,

q. (2) , reads using the summation convention of Einstein, 

 m,i = −∂(ρu j u i ) 

∂x j 
+ 

∂ 

∂x j 

[
μ

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 

)]

+ 

∂ 

∂x j 

[(
κ − 2 

3 

μ
)
∂u l 

∂x l 

]
δi j + ρ

N s ∑ 

k =1 

Y k f k,i , (7)

here δij , f k, i , μ and κ are the Kronecker delta, components of the

pecific volume force acting on species k , dynamic and volume

iscosity, respectively. The right-hand side of the temperature

quation, Eq. (3) , has been split into a stiff term, ϑ, and a non-stiff

erm, R T , respectively: 

 = − 1 

ρC p 

N s ∑ 

k =1 

h k ˙ ω k , (8)

 T = −u j 
∂T 

∂x j 
+ 

1 

ρC p 

[ 

∂ 

∂x j 

(
λ

∂T 

∂x j 

)
− ∂T 

∂x j 

N s ∑ 

k =1 

ρC p,k Y k V k, j 

+ 

N s ∑ 

k =1 

ρY k V k, j f k, j 

] 

. (9)

n Eqs. (8) and (9) , C p , h k , ˙ ω k , λ, V k, j represent the specific heat

apacity at constant pressure, specific enthalpy, mass reaction rate,

eat diffusion coefficient and j th component of the species molec-

lar diffusion velocity, respectively. The stiff term ϑ involves the

eaction rates induced by chemical kinetics and will be integrated

n time separately from R T , leading to a much faster and more

obust integration. 

In a similar manner, the right-hand side of the conservation

quation for the mass fraction of species k, Y k ( Eq. 4 ), has been

plit into a stiff term, � k , and a non-stiff term, R Y k , respectively: 

 k = − ˙ ω k 

ρ
, (10)

 Y k = −u j 

∂Y k − 1 

∂(ρY k V k j ) 
. (11)
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.1. Diffusion velocity 

To solve the system involving Eqs. (9) and (11) , the molecular

iffusion velocity of species k , V k , must be modeled appropriately.

n order to increase flexibility, three different approaches are

mplemented in DINOSOARS, leading to increasing accuracy but

lso computational requirements [22] , 

1. Unity Lewis numbers; 

2. Mixture-averaged diffusion velocities; 

3. Multicomponent diffusion velocities. 

Additionally, thermal diffusion (Soret term) may be considered

or light species, but without the inverse (Dufour) effect. Diffusion

ue to pressure gradients and to external forces is not relevant for

he considered applications and is thus not accounted for. 

.1.1. Unity Lewis numbers 

In that case, it is assumed that the Lewis number of species

 , Le k = λ/ (ρC p D k ) are all identical and equal to unity, meaning

hat the molecular diffusion velocity of all species is equal to the

eat diffusion velocity. Then, the diffusion coefficient of species k,

 k , can be immediately estimated as D k = λ/ (ρC p ) and is identical

or all species, D k = D . The diffusion velocity finally reads: 

 k = −D 

∇X k 

X k 

, (12) 

ith X k the mole fraction of species k . 

.1.2. Mixture-averaged diffusion coefficient 

Here, following the classical approximation proposed by

irschfelder and Curtiss, a mixture-averaged diffusion coefficient

 k is first computed for each species k using, 

 k = 

1 − Y k ∑ 

j � = k X j / D jk 

, (13) 

here the D jk are the binary diffusion coefficients. Then, the

iffusion velocity is determined by 

 k = −D k 

∇X k 

X k 

+ 

N s ∑ 

k =1 

D k ∇X k 

W k 

W 

, (14)

he last term in this equation is the correction velocity needed to

ulfill mass conservation by molecular diffusion, i.e., 
∑ N s 

k =1 
Y k V k = 0 ,

ith W k the atomic weight of species k . 

.1.3. Multicomponent diffusion velocity 

In many applications the combustion process can not be re-

uced to a representation of a simple binary mixture. Therefore,

he formulation of a species transport law has to account for

ifferent transport properties of each species. In general, the

ulticomponent diffusion process is computed by inverting the

pecies linear transport system [23] , 

 = L 0 0 , 0 0 
−1 

, (15) 

ith 

 

0 0 , 0 0 
i j 

= 

16 T 

25 p 

N s ∑ 

k =1 

X k 

W i D ik 

{
W j X j (1 − δik ) − W i X j (δi j − δ jk ) 

}
. (16) 

he multicomponent diffusion coefficients are then given by 

 i j = X i 

16 T W 

25 p W j 

(F i j − F ii ) . (17)

inally, the species diffusion velocities read 

 k = − 1 

X k W 

N s ∑ 

j=1 

W j D k j ∇X j . (18)

n order to evaluate efficiently all multicomponent transport prop-

rties, the EGlib library [23,24] in its version 3.4 has been coupled

o DINOSOARS. 
.1.4. Thermal diffusion 

Thermal diffusion (Soret effect) is implemented as an additional

erm that might be switched on by decision of the user. The cor-

esponding diffusion velocity reads 

 kT = −D kT 

∇T 

T 
. (19) 

onsidering that the corresponding computation of D kT is relatively

xpensive and that this term is only important for light molecular

pecies, the Soret effect is usually only activated for species H and

 2 . 

.2. Further transport coefficients 

Additional transport coefficients appear in the equations listed

bove. The computation of the heat diffusion coefficient λ and

f the dynamic viscosity μ relies by default on Cantera 1.8, or

lternatively on EGlib 3.4. The EGlib 3.4 library is always employed

o compute the volume viscosity κ appearing in Eq. (7) , whenever

eeded [25] . 

.3. Thermodynamic parameters 

All thermodynamic parameters appearing in the previous con-

ervations equations, such as C p, k and h k are computed by coupling

INOSOARS with Cantera 1.8. 

.4. Chemical kinetics 

The chemical source terms ˙ ω k appearing in the conservation

quations for species are computed by Cantera 1.8 based on de-

ailed reaction schemes from the literature, solving one transport

quation for each chemical species appearing in the system. For

nstance, for one application presented at the end of this paper

a turbulent ethylene flame), 51 transport equations are taken

nto account; 46 equations for the 46 species of the reaction

echanism, 3 for momentum, 1 for temperature and 1 Poisson

quation (using the equation of state to close the system). 

. Incompressible formulation for non-reacting flows 

For non-reacting flows at l ow Mach numbers, it is better to use

ully incompressible flow equations, reducing to mass and momen-

um conservation, since energy conservation need not be consid-

red separately. This leads to a faster integration and to a reduction

f the memory requirements. Mass conservation reads simply 

∂u i 

∂x i 
= 0 , (20) 

hile the right-hand side of the momentum equation, Eq. (7) ,

educes to, 

 m,i = −∂(ρu j u i ) 

∂x j 
+ μ

∂ 2 u i 

∂x 2 
j 

+ ρ f i , (21) 

or a constant dynamic viscosity μ, where f is the specific volume

orce acting on the fluid. 

. Algorithms 

.1. Parallelization 

The parallelization of the code relies on a 2D pencil decomposi-

ion using the open-source library 2DECOMP&FFT [26] , which has

een designed to perform optimized three-dimensional distributed

FTs. This library is called on top of standard MPI and MPI-I/O

ibraries and includes user-friendly programming interfaces. 2DE-

OMP&FFT supports large-scale parallel applications on distributed
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Fig. 1. 2D domain decomposition with x-pencil orientation. 
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memory systems and shows excellent performance on a variety

of existing supercomputers [27,28] . The library comprises two

different possible pencil orientations, x-pencils and z-pencils. DI-

NOSOARS has been coded with the x-pencil orientation ( Fig. 1 ) in

order to minimize the computational time needed for transposing

the data as required for non-periodic boundary conditions. Using

2DECOMP&FFT an excellent parallel scaling has been obtained

with DINOSOARS, as discussed later in Section 6.1 . 

5.2. Time integration 

In order to increase flexibility, three different time integration

algorithms have been coded in DINOSOARS. The final choice of

the user should be based on the considered application, on the

required accuracy, on the available computational resources and,

most important, on the stiffness of the problem, in particular for

reacting flows. 

The first algorithm is a fully explicit, fourth-order Runge-Kutta

method rewritten as a low-storage algorithm [29] . It is the sim-

plest and computationally most efficient algorithm. It is activated

by default for non-reacting cases. However, it suffers from a lim-

ited stability for stiff applications. The solution procedure reads 

T n +1 = T n + 
t ( ϑ 

n + R 

n 
T ) , (22)

 

n +1 
k 

= Y n + 
t 
(
� 

n 
k + R 

n 
Y k 

)
, (23)

ρn +1 = 

p W 

n +1 

R T n +1 
, (24)

( ρu i ) 
∗ = ( ρu i ) 

n + 
t R 

n 
m,i , (25)

∇ 

2 ˜ p n +1 / 2 = 

1 


t 

[
∂ t ρ

n +1 + ∂ j (ρu j ) 
∗], (26)
(ρu i ) 
n +1 = (ρu i ) 

∗ − 
t ∂ i ̃  p n +1 / 2 . (27)

As documented in Eqs. (25) - (27) , the coupling between conti-

uity and momentum equation is handled by using the pressure-

ree projection method [30–32] . In this approach the intermedi-

te quantity ( ρu ) ∗ is obtained by solving the momentum equation

ithout pressure gradient ( Eq. 25 ). Then, applying the divergence

perator to Eq. (27) leads to 

 

2 ˜ p n +1 / 2 = 

1 


t 

[
∂ i (ρu i ) 

∗ − ∂ i (ρu i ) 
n +1 

]
. (28)

The Poisson equation is closed by substituting the continuity

quation, Eq. (1) , into Eq. (28) , leading to the continuity constraint.

n Eq. (26) , a third-order backward finite-difference approximation

s used to compute ∂ t ρn +1 . 

The second algorithm for time integration is based on the split

emi-implicit fourth-order Runge–Kutta scheme. In this algorithm

he right-hand side of the governing equations for temperature and

pecies are split into non-stiff parts ( R T , R k ) and stiff parts ( ϑ, � k ),

ollowing [33,34] . The non-stiff parts of T and Y k are solved using

he explicit fourth-order Runge–Kutta solver 

 

∗ = T n + 
t ( R 

n 
T ) , (29)

 

∗
k = Y n + 
t 

(
R 

n 
Y k 

)
, (30)

∗ = 

p W 

∗

R T ∗
. (31)

he stiff parts are integrated in time by using the implicit solver

ADAU-5 [35,36] . Then, both solutions are added 

 

n +1 = T ∗ + 
t 
(
ϑ 

n +1 
)
, (32)

 

n +1 
k 

= Y ∗ + 
t 
(
� 

n +1 
k 

)
, (33)

n +1 = 

p W 

n +1 

R T n +1 
. (34)

Finally, momentum conservation and Poisson equation are again

ntegrated using the explicit fourth-order Runge–Kutta method, as

xplained above ( Eqs. 25 - 27 ). 

The third possibility for time integration is to use the addi-

ive third-order Runge–Kutta method. This non-split semi-implicit

unge–Kutta algorithm is an extension of the Rosenbrock Runge–

utta approach. In this algorithm the system of equations is solved

s follows: 

 t Z = f ( Z ) + g ( Z ) (35)

 t (ρu ) = f (ρu ) − ∇ ̃

 p (36)

here f and g are the non-stiff and stiff right-hand side vectors

f the equation system, respectively, while Z is the vector contain-

ng the scalar variables (T , Y 1 , Y 2 , ....., Y N s ) 
′ . Then, the solution is ob-

ained through following steps: 

 

n +1 = Z 

n + 

r ∑ 

j=1 

α j K z j , (37)

ρn +1 = 

p W 

n +1 

R T n +1 
, (38)

(ρu ) ∗ = (ρu ) n + 

r ∑ 

j=1 

α j K u j , (39)
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2 ˜ p n +1 / 2 = 

1 


t 

[
∂ t ρ

n +1 + ∇(ρu ) ∗
]
, (40) 

(ρu ) n +1 = (ρu ) ∗ − 
t∇ ̃

 p . (41) 

here, 
 

I − 
t a i J 

( 

Z 

n + 

i −1 ∑ 

j=1 

(d i j K z j ) 

) ] 

K z i 

= 
t 

[ 

f 

( 

Z 

n + 

i −1 ∑ 

j=1 

(b i j K z j ) 

) 

+ g 

( 

Z 

n + 

i −1 ∑ 

j=1 

(c i j K z j ) 

) ] 

, (42) 

nd 

 u i = 
t 

[ 

f 

( 

(ρu ) n + 

i −1 ∑ 

j=1 

(c i j K u j ) 

) ] 

, ∀ i = 1 , 2 , .., r. (43) 

In Eqs. (37) - (43) , r is the number of stages (in DINOSOARS, r = 3

y default, leading to third order in time) and J = ∂ g /∂ Z is the Ja-

obian matrix of the stiff term, g . The symbols αj , a i , b ij , c ij and

 ij designate constant coefficients. The values of these coefficients

epend on the retained order. The values used in DINOSOARS are

isted in Table 1 and correspond to the third-order case. More de-

ails about the method and its accuracy can be found in [37] . 

Independently from the retained integration procedure, the

imestep of the computation can be optionally controlled by three

ifferent limiters, separately or in combination: 1) the Courant–

riedrichs–Lewy (CFL) stability criterion, 2) the Fourier stability cri-

erion for diffusive terms, and 3) a dynamic accuracy control ob-

ained through timestep-doubling within the Runge–Kutta proce-

ure, as already used in past DNS codes [1,29] . 

.3. Spatial discretization 

All partial derivatives in space appearing in the conservation

quations are discretized using centered, sixth-order finite dif-

erences (seven-point stencil), stepwise reduced down to third-

rder near domain boundaries. The communication across proces-

or boundaries is handled by using the halo-cell communication

unction included in the 2DECOMP&FFT library. 

.4. Solving the Poisson equation in parallel 

One of the most difficult issues associated with any l ow-Mach

r incompressible flow solver is to find an efficient way for solv-

ng the Poisson equation. Usually, it is solved by explicit iterative

ethods (Conjugate Gradient CG, Multi-grid, etc.) or more rarely

y implicit methods (matrix inversion, spectral methods, or com-

inations of both). In DINOSOARS, the Poisson equation is solved

y FFT, even when the boundary conditions of the domain are not

eriodic. 

The developed approach is an extension of that described in

27,28,38,39] , where pre- and post-processing were applied both

n physical and in wave space. The current algorithm needs only

re- and post-processing in the physical space and for a different

urpose. Additional differences result from the fact that the pres-

ure is solved in DINOSOARS in a collocated manner and not on a

taggered grid. 

Suitable pre- and and post-processing steps are applied to the

orresponding array before and after calling the parallel FFT sub-

outine included in 2DECOMP&FFT. All tests have demonstrated

hat this method delivers a very high order (equivalent spectral

ccuracy) and is also computationally very efficient compared to

xisting alternatives. In order to explain the current algorithm it is
etter to start with classical discrete Fourier transform ( ̂  F k ) for a

eal sequence F j , j = 0 , 1 , 2 , ...., N − 1 , which is defined by, 

ˆ 
 k = 

1 

N 

N−1 ∑ 

j=0 

F j e 
−2 π jk 

√ −1 /N , k = 0 , 1 , ...., N − 1 . (44) 

hanks to Hermitian symmetry, ˆ F k = 

ˆ F ∗
n −k 

, with 

ˆ F N = 

ˆ F 0 . The inverse

f this transform reads 

 j = 

N−1 ∑ 

k =0 

F k e 
2 π jk 

√ −1 /N . (45) 

his operation is directly applied only for periodic sequences (pe-

iodic boundary conditions). These two transforms can then be ob-

ained immediately with 2DECOMP&FFT and FFTW libraries, using

FT and IFFT algorithms, respectively. 

Concerning now the implementation in DINOSOARS, F j is first

ransformed in case of Dirichlet-Dirichlet (DD) boundary condi-

ions using a discrete sine transform (DST), 

ˆ 
 k = 

2 

N 

N−1 ∑ 

j=1 

F j sin (π jk/N) . (46) 

n order to obtain the Fourier transform with the standard FFT par-

llel routines included in 2DECOMP&FFT, the F j array is extended

n a pre-processing step to a temporary, odd symmetry sequence

ith length of (2 N ), in the form (0, F 1 , F 2 , ..., F N−1 , 0, −F N−1 , ..., −F 2 ,

F 1 ), where F j = −F 2 N− j for j = 1 , N − 1 . 

In the same manner, in case of Neumann-Neumann (NN)

oundary conditions, a discrete cosine transform (DCT) is used in-

tead 

ˆ 
 k = 

2 

N 

[ 

F 0 
2 

+ 

N−1 ∑ 

j=1 

F j cos (π jk/N) + 

(−1) k F N 
2 

] 

, (47) 

he standard FFT routine is applied after extending the array in a

re-processing step into a temporary, even symmetry sequence of

ength (2 N ) with the form of ( F 0 , F 1 , F 2 , . . . , F N−1 , F N , F N−1 , . . . , F 2 ,

 1 ), where F j = F 2 N− j for j = 1 , N − 1 . 

A combination between both boundary conditions is also pos-

ible. In the case of a Dirichlet–Neumann (DN) combination, a

uarter-wave discrete sine transform (QW-DST) is suitable 

ˆ 
 k = 

1 

N 

[ 

F 0 
2 

+ 

N−1 ∑ 

j=1 

F j sin (π j(2 k − 1) / (2 N)) + 

(−1) k −1 F N 
2 

] 

, (48) 

hen, a classical FFT routine is again possible, after extending the

riginal sequence to a temporary, odd symmetry sequence with

ength of (4 N ) where (0, F 1 , . . . , F N , F N−1 , . . . , F 1 , 0, −F 1 , . . . , −F N ,

F N−1 , . . . , −F 1 ). Similarly, a case with Neumann–Dirichlet (ND)

oundary conditions is now transformed with a quarter-wave dis-

rete cosine transform (QW-DCT), 

ˆ 
 k = 

1 

N 

[ 

F 0 
2 

+ 

N−1 ∑ 

j=1 

F j cos (π j(2 k − 1) / (2 N)) 

] 

, (49) 

ith a standard FFT routine after extending the original sequence

o a temporary, even symmetry sequence with length of (4 N ), in

he form ( F 0 , F 1 , . . . , F N−1 , 0, −F N−1 , . . . , −F 0 , −F 1 , . . . , −F N−1 , 0,

 N−1 , . . . , F 1 ). 

Finally, the algorithm implemented in DINOSOARS for solving

he Poisson equation ∇ 

2 p = F can be summarized as follows: 

1. Pre-processing for sequence F (input to the algorithm), which is

a real array of length N , extending its length depending on the

boundary conditions; 
• DD: M = 2 N, (0, F 1 , F 2 , ..., F N−1 , 0, −F N−1 , ..., −F 2 , −F 1 ); 
• NN: M = 2 N, ( F 0 , F 1 , F 2 , . . . , F N−1 , F N , F N−1 , . . . , F 2 , F 1 ); 
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Table 1 

Coefficients for third-order additive semi-implicit Runge–Kutta integration. 

( a i ) ( b i j = d i j ) ( c ij ) ( αj ) 

a 1 a 2 a 3 b 21 b 31 b 32 c 21 c 31 c 32 α1 = α2 α3 

0.797097 0.591381 0.134705 8 
7 

71 
252 

7 
36 

1.05893 0.5 −0 . 375939 1 
8 

3 
4 
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• DN: M = 4 N, (0, F 1 , . . . , F N , F N−1 , . . . , F 1 , 0, −F 1 , . . . , −F N ,

−F N−1 , . . . , −F 1 ); 
• ND: M = 4 N, ( F 0 , F 1 , . . . , F N−1 , 0, −F N−1 , . . . , −F 0 , −F 1 , . . . ,

−F N−1 , 0, F N−1 , . . . , F 1 ). 

2. Apply standard FFT routine ( Eq. 44 ) over M discrete points to

obtain 

ˆ F k ; 

3. Solve the Poisson equation in wave space, ˆ p = − ˆ F / κ2 ; 

4. Apply standard IFFT routine ( Eq. 45 ) to Fourier transform of the

pressure ( ̂  p ), obtaining the pressure in the physical space saved

in temporary array F (overwritten to save memory); 

5. Post-processing for array F by saving the correct part into an

array P of length N . 

This algorithm has been coded for parallel simulations (paral-

lel FFT) to speed-up the process. Considering for instance a small

3D DNS involving 65 × 65 × 32 grid points parallelized using 16

cores with Dirichlet–Neumann, Neumann-Neumann, and periodic-

periodic boundary conditions in x, y , and z direction, respectively,

the implemented algorithm is already 6.75 faster than the CG

solver implemented in the well-known HYPRE library [40] . 

5.5. Boundary conditions in iime and space 

For DNS relying on the l ow-Mach number or on the incom-

pressible formulation, boundary conditions in space are straightfor-

ward [3] , at the difference of compressible DNS tools [41] . Standard

Dirichlet and Neumann boundary conditions perform well and are

stable. 

Concerning initial conditions in time, a suitable approximation

of real turbulence must usually be generated for DNS. It is then

either used directly for time-decaying simulations in the same do-

main, or it is employed for turbulence injection through an inflow

boundary, leading to spatially-evolving turbulence. Both solutions

are available in DINOSOARS. 

To generate the initially needed approximation of the turbulent

flow field, four different algorithms are available in the code, so

that initial solutions can be obtained for a broad range of inte-

gral length scales, turbulence intensities and geometrical config-

urations. By default, an Inverse Fast Fourier Transform (IFFT) re-

lying either on the Passot–Pouquet spectrum or on the Von Kár-

mán spectrum with Pao correction [1] (see later Eq. 68 ) is im-

plemented in parallel using 2DECOMP&FFT. As alternatives, the

Kraichnan technique [42] , digital filtering [43] , or random noise

diffusion [44] are available as well. 

5.6. Immersed boundaries 

Using two different formulations, the Immersed Boundary

Method (IBM) is implemented within DINOSOARS. The first one

pertains to static immersed boundaries, that will not change

in time; this is particularly useful to carry out DNS in com-

plex geometries. Considering now moving particles (solid particles,

droplets) resolved on the grid, the second usage of IBM is to de-

scribe two-phase flows. Both approaches are described in more de-

tail in the next two sections. 

5.6.1. DNS in complex geometries 

By default, a regular tensor-product grid is generated by DI-

NOSOARS. If desirable for the considered application, a static re-
nement can be applied based on stretching functions close to the

oundaries (for a better resolution of the boundary layer) or at any

lace within the domain (e.g., for a better resolution of a mixing

egion). When applying a static grid refinement, a numerical trans-

ormation is applied based on the chain rule. Hence, the deriva-

ives are still computed on a regularly-spaced computational grid,

nd then projected onto the real, adapted grid [45–47] . The trans-

ormation function must only be computed once, since it does not

hange. In that case, it is much easier to keep the equidistant for-

ulation of the derivative computation, and multiply afterwards

ith the (fixed) transformation function. Tests have shown that it

s also slightly faster in terms of computing time. 

When considering now cases with a complex (but currently

ime-independent) geometry, DINOSOARS relies on the Direct

oundary Immersed Boundary Method (DB-IBM). The details of the

lgorithm can be found in [4 8,4 9] . For this purpose, DINOSOARS

eads the discretized input geometry in 3D as binary values trans-

ormed into a boolean variable describing if the corresponding

oint is within the wall (value: 0) or within the flow (value: 1).

n this manner, even very complex and irregular geometries can

e considered in the DNS simulation. Note that the spectral Pois-

on solver described previously in Section 5.4 is compatible with

ll other features implemented in the code, like those described

ere. 

As an example, Fig. 2 shows a patient-specific cerebral

neurysm [50] represented in DINOSOARS by using DB-IBM, and

nstantaneous streamlines obtained in this geometry at peak sys-

ole, colored by velocity magnitude. 

.6.2. Multiphase flows 

Currently, three different multiphase flow scenarios of increas-

ng complexity can be handled by DINOSOARS. Until now, the dis-

erse phase involves only spherical particles though working so-

utions for resolving spheroids and ellipsoids are available as well

51] 

1. Non-resolved solid particles (also called point particles), suit-

able to describe particles smaller than the Kolmogorov length

scale, which cannot be resolved on the employed DNS grid, as

depicted in Fig. 3 (left). 

2. Non-resolved droplets, possibly involving evaporation and

chemical reactions. Here, mass and heat exchange between

both phases are considered additionally, similar to the ap-

proach retained in [52] . Applied to describe the momentum ex-

change between flow and particles, the Lagrangian point-force

approach considers Stokes model for the drag force [53,54] . The

droplet momentum equation reads 

dV k 

dt 
= 

U ∞ 

− V k 

τv ,k 
, (50)

dX k 

dt 
= V k , (51)

τv ,k = 

ρL a 
2 
k 

18 μ f 

(
1 + 

1 
6 

Re 2 / 3 
k 

) . (52)

In Eqs. (50) – (52) , V k and U ∞ 

are the velocity of the k th

droplet and of the surrounding gas at droplet location. Also, X ,
k 
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Fig. 2. Representation of domains with a complex geometry in DINOSOARS using DB-IBM. Left: patient-specific cerebral aneurysm [50] . Right: Streamlines colored by velocity 

magnitude at peak systole. 

Fig. 3. Particles in initially homogeneous isotropic turbulence (HIT). The color field shows vorticity. Left: non-resolved spherical particles (ratio diameter/Kolmogorov length 

scale of 0.1). Right: fully resolved solid spherical particles (ratio diameter/Kolmogorov length scale of 20.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρL , Re k , a k and μf are droplet position vector, density, Reynolds

number, diameter and gas viscosity at the droplet position, re-

spectively. Subscripts ∞ , f are standing for properties of gaseous

mixture in the far-field and film regions, respectively. 

The evaporation process is computed by using an infinite

conduction model inside the droplet and a variable Spalding

mass transfer number, B k and heat transfer number, B T, k (see

Eqs. 53 - 60 ) 

da 2 
k 

dt 
= − a 2 

k 

τa,k 

, (53) 

dT k 
dt 

= 

1 

τt,k 

[ 

T ∞ 

− T k −
B T,k L v 

W f C p,F 

(
T c − T k 
T c − T ref 

)0 . 38 
] 

, (54) 

τa,k = 

Sc k 
4 Sh k 

ρL a 
2 
k 

μ f 

1 

ln (1 + B m,k ) 
, (55) 

τt,k = 

Pr k 
6 Nu k 

ρL a 
2 
k 

μ f 

B T,k 

ln (1 + B T,k ) 

C p,L 

C p, f 

, (56) 

B m,k = 

Y k,s − Y ∞ ,F 

1 − Y 
, (57) 
k,s 
 

B T,k = ( 1 + B m,k ) 

C p,F Sh k Pr k 
C p,L Nu k Sc k − 1 , (58) 

Y k,s = 

W F 

W F + W O 

(
P ∞ 

/P k,s − 1 

) , (59) 

P k,s = P re f exp 

⎡ 

⎢ ⎣ 

−
L v 

(
T c −T k 

T c −T re f 

)0 . 38 

R f 

(
1 

T s 
k 

− 1 

T re f 

)⎤ 

⎥ ⎦ 

. (60) 

In this set of equations, T k , Y k, s , P k, s , P ref , T ref , T c , Y ∞ , F , P ∞ 

and

T ∞ 

, are the temperature of droplet k , gaseous fuel mass frac-

tion flux at the droplet surface, partial pressure of fuel at the

droplet surface, reference pressure, reference temperature, crit-

ical temperature, fuel mass fraction in the surrounding gas mix-

ture, surrounding gas pressure and gas temperature at droplet

location, respectively. Also, Pr, C p, L , C p, F , C p,f , Nu, Sc, Sh c , L v , W F 

and W O are Prandtl number, specific heat of the liquid droplet,

specific heat of the fuel vapor, specific heat of the gas mix-

ture, Nusselt number, Schmidt number, Sherwood number, la-

tent heat of evaporation, molecular weight of fuel and oxidizer,

respectively. 

3. Fully resolved, moving solid particles. At the difference of

the previous approaches, when considering spherical particles
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Fig. 4. Parallel efficiency (strong scaling) of DINOSOARS on SuperMUC. 
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noticeably larger than the Kolmogorov length scale, the exter-

nal surface of the particles can and should be resolved ( Fig. 3 ,

right). For this purpose, the DF-IBM described in [32,55] has

been implemented in DINOSOARS [56,57] . Three different col-

lision models are included to describe particle-particle and

particle-wall interactions: hard sphere model, lubrication force

model, and repulsive force model. 

6. Code performance and verification 

6.1. Parallel efficiency 

After profiling and optimizing single-processor performance,

parallel efficiency has been tested on a variety of machines in or-

der to check portability. In the interest of space, only results ob-

tained with SuperMUC at Leibniz supercomputing center in Mu-

nich will be discussed. Fig. 4 shows the strong scalability per-

formance obtained with DINOSOARS. This test corresponds to the

DNS of a turbulent hydrogen/air flame using a detailed reaction

scheme. For this test, the number of processors was varied from

1 024 to 16 384. The obtained parallel efficiency still reaches 85%

with 8 192 cores, which is considered as an excellent result for a

low-Mach solver. The considerably lower performance with 16 384

cores (74%) is due to the fact that, for this number of cores, two

separate islands have to be combined on SuperMUC, leading to

large communication overheads. 

DINOSOARS thus shows a very good parallel efficiency, ensur-

ing efficient computations for up to O (10 4 ) cores, which is a very

satisfactory result for a l ow-Mach solver, since global operations

associated to the Poisson equation severely constrain the parallel

performance. 

6.2. Accuracy and order 

Many benchmarks have been considered during the develop-

ment of DINOSOARS. In the interest of space, it is impossible to

document all the corresponding results. In the present section, the

most important benchmarks will be discussed. In order to quantify

the accuracy of the solution, the L 2 and L ∞ 

error norms will be

computed: 

L 2 = ‖ u 

d − U 

ex ‖ 2 = 

√ 

1 

N 

N ∑ 

n =1 

| u 

d 
n − U 

ex 
n | 2 , (61)

L ∞ 

= ‖ u 

d − U 

ex ‖ ∞ 

= max 
1 ≤n ≤N 

| u 

d 
n − U 

ex 
n | . (62)
here u d and U 

ex are the numerical and exact analytical solutions,

espectively. 

.2.1. Spatial order and P oisson equation: 2D Taylor–Green vortex 

2D-TGV) 

The first benchmark considers the two-dimensional Taylor-

reen vortex (2D-TGV). The 3D version of this problem will be dis-

ussed later for validation. The initial velocity and pressure fields

re prescribed at t = 0 as follows: 

u (x, y, 0) = sin (2 πx/L ) cos (2 πy/L ) , 

v (x, y, 0) = −cos (2 πx/L ) sin (2 πy/L ) , 

p(x, y, 0) = 

ρ

24 

[ cos (4 πx/L ) + cos (4 πy/L ) ] . (63)

he analytical solution reads: 

u (x, y, t) = u (x, y, 0) exp 

−8 π2 νt/L 2 , 

v (x, y, t) = v (x, y, 0) exp 

−8 π2 νt/L 2 , 

p(x, y, t) = p(x, y, 0) exp 

−16 π2 νt/L 2 . (64)

n the present case, the 2D-TGV is simulated in a periodic square

omain with a side length of L = 1 . 0 m, with varying number of

rid points ( N ) and kinematic viscosity ( ν) but with a fixed time

tep ( 
t = 0 . 1 ms). The error norm L 2 of the velocity field shown

n Fig. 5 (left) demonstrates that DINOSOARS reaches 6th order

n space for the solution of the Navier–Stokes equation. Concern-

ng now the Poisson solver, the error norms of the pressure field

ave been computed based on the analytical solution. Fig. 5 (right)

hows indirectly that the order of convergence for the Poisson

olver is much higher than sixth-order. In fact, exponential con-

ergence is achieved, as demonstrated in further tests (not shown

n the interest of space). Due to the interaction between finite-

ifference and spectral solver in this particular test case ( Eq. 28 ),

he overall order shown in Fig. 5 (right) cannot be better than the

ixth-order of the finite-difference solution. 

.2.2. Temporal order: Wave equation 

To check the temporal order of the time integration algorithm

elying on the explicit Runge–Kutta scheme, a hyperbolic, one-

imensional wave equation was considered in a periodic DNS do-

ain 

∂u 

∂t 
= −c 

∂u 

∂x 
, (65)

 (x, t = 0) = sin (2 πx ) , (66)

or this system, the analytical solution is known 

(x, t) = sin [2 π(x − c t)] . (67)

Fig. 6 (left) shows the comparison between the solution ob-

ained with DINOSOARS, u , and the analytical solution, U , at differ-

nt time instants. The simulation employs 128 grid points, a fixed

imestep ( 
t = 0 . 5 ms), and a fixed wave speed of c = 0 . 5 m/s.

n order to obtain the temporal order, both norms are again com-

uted, this time with a fixed number of grid points but changing

he timestep. Fig. 6 (right) shows that the Runge–Kutta procedure

elivers as expected an overall fourth-order approximation in time.

. Validation 

.1. Homogeneous isotropic turbulence (HIT) 

For a DNS solver, describing properly turbulence properties is

bviously essential. In order to check this feature, one of most fun-

amental test cases is the decay of homogeneous isotropic turbu-

ence. Validation is done here by comparing the turbulence statis-

ics obtained by DINOSOARS with those obtained experimentally
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Fig. 5. Verification and spatial order obtained by solving the 2D Taylor-Green vortex problem. Left: L 2 of velocity field. Right: L ∞ and L 2 of pressure field. 

Fig. 6. Verification and temporal order obtained by solving the one-dimensional wave equation. Left: time-dependent solution. Right: error norms and resulting temporal 

order of DINOSOARS. 
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ehind grid turbulence [58] . The normalized spectrum obtained

ith DINOSOARS for decaying HIT is compared directly with the

pectrum from the experiment of Comte-Bellot and Corrsin (1971)

t a Taylor Reynolds number of Re λ = 71 . 6 and Re λ = 65 . 1 . To ini-

iate the simulation, the DNS is started with an analytically pre-

cribed turbulence spectrum E ( κ) following von Kármán with Pao

orrection (VKP spectrum): 

( κ) = 

3 u 

5 
e 

2 εe 

[ κ/κe ] 
4 

[1 + ( κ/κe ) 2 ] 17 / 6 
exp 

(
−9 

4 

[ 
κ

κd 

] 4 / 3 )
, (68) 

here u e , εe , κd and κe are the spectrum coefficients and κ is

he wave number vector. Here, values of 0.21, 0.01, 0.08 and 0.018

ave been chosen for the spectrum coefficients, respectively, in or-

er to generate initial turbulence in a domain of size 10 × 10 ×
0 cm 

3 . After a time t = 11 . 2 τη, a Taylor-based Reynolds number

e λ = 71 . 1 is obtained and the turbulence properties are compared

ith the experimental data. Table 2 also contains Re �, ε, u ′ , λ, �,

�, η, and τη , which correspond to Reynolds number based on

ntegral length scale, dissipation rate of the kinetic energy, fluctua-

ion velocity root mean square, Taylor length scale, integral length

cale, large eddy turn-over time scale, Kolmogorov length scale,

nd Kolmogorov time scale, respectively. 

Fig. 7 shows the results for the Q-criterion isosurface ( Fig. 7 ,

eft), and the normalized energy spectrum of the simulation at

ime t = 11 . 2 τη and of the experiments ( Fig. 7 , right). The compar-
sons show that the DINOSOARS simulation agrees perfectly with

he experimental results. It is important to keep in mind that, in

his simulation, the ratio of η/ 
x , where 
x denotes the grid spac-

ng, is larger than unity and the product κmax η is larger than 2 dur-

ng the whole simulation, ensuring that all small flow structures

re correctly captured. 

.2. 3D Taylor–Green vortex (TGV) 

The Taylor-Green vortex (TGV) is a canonical problem in fluid

ynamics to study vortex dynamics, laminar to turbulent transi-

ion, turbulent decay and energy dissipation. Furthermore, it was

etained as one of the central benchmarks in the International

orkshops on High-Order CFD Methods [59] . The TGV problem in-

olves different key physical processes found in turbulence and is

herefore an excellent testcase for the evaluation of DNS codes. The

roblem consists of a cubic volume of fluid that contains a smooth

nitial distribution of vorticity, as shown in Fig. 8 . 

As time advances the vortices roll-up, stretch and interact be-

ore breaking down. Eventually, viscosity will dissipate all the en-

rgy in the fluid and it will come to rest along a well-defined tra-

ectory [60] . Here, results of DINOSOARS are compared with simu-

ation results obtained with a pseudo-spectral code using 512 3 grid

oints [61] . These results are later denoted RLPK. The geometry

s a periodic box of dimension of 0 ≤ x, y, z ≤ 2 π [m], a value
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Table 2 

Turbulence properties at time t = 11 . 2 τη

N 3 Re λ Re � ε [m 

2 /s 3 ] u ′ [m/s] λ [mm] � [mm] τ� [ms] η [mm] τ η [ms] 

512 3 71.1 336.8 42.52 0.92 3.86 18.3 81.4 0.23 1.1 

Fig. 7. Homogeneous isotropic turbulence decaying in time. Left: Q-criterion isosurface (value of 6 × 10 5 1/s 2 ) at time t = 11 . 2 τη . Right: energy spectrum obtained by DI- 

NOSOARS compared with experimental results of [58] . 

Fig. 8. Isosurface of z-vorticity of 3D-TGV at initial conditions. 
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kept to facilitate post processing and comparisons with results

from the literature. The initial conditions for TGV are given by the

following: 

u (x, y, z, 0) = u 0 sin (x/L ) cos (y/L ) cos (z/L ) , (69)

v (x, y, z, 0) = −u 0 cos (x/L ) sin (y/L ) cos (z/L ) , (70)

i  
 (x, y, z, 0) = 0 , (71)

here u 0 = 1 m/s and L = 1 m are reference velocity and length,

espectively. The flow is computed at a Reynolds number (Re =
 0 L/ν) of 1600. Using 384 3 or 512 3 grid points, the simulation is

erformed for a duration of 20 T c , where T c = L/u 0 is the charac-

eristic convective time scale. By solving the Poisson equation, the

nitial pressure field is obtained. The time evolution of isosurfaces

f z-vorticity at different times when using 512 3 grid points is il-

ustrated in Fig. 9 . Starting from Fig. 9 (top-left), the vortices start

o roll-up. Then, a breakdown of the coherent structures occurs

 Fig. 9 , top-right). Fig. 9 (bottom-left) shows the onset of turbu-

ence before decay due to dissipation ( Fig. 9 , bottom-right). 

Fig. 10 presents the comparison of the DINOSOARS results with

hat of the pseudo-spectral code (RLPK [61] ). On the left, the time

volution of kinetic energy 

E(t) = 

1 

2 

〈 u i u i 〉 , (72)

ormalized by its initial value is presented, while on the right the

volution of the dissipation rate ε (normalized by its maximum

alue) is shown. For this, ε is computed directly from the strain

ate tensor, S ij 

(t) = 2 ν 〈 S i j S i j 〉 , (73)

here 〈 · 〉 in Eqs. (72) and (73) denotes a spatial average. The

omparison between DINOSOARS and RLPK results shows an ex-

ellent agreement. This benchmark proves again the ability of DI-

OSOARS not only to simulate turbulent flows but also transition

nd dissipation processes. 

.3. Turbulent channel flow 

Since resulting features are non-homogeneous and non-

sotropic, DNS of a wall-bounded turbulent channel is far more
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Fig. 9. Time evolution of isosurfaces of z-vorticity for 3D-TGV using 512 3 grid points at times: t/T c = 5.46 (vortex roll-up, top left), t/T c = 8.0 (coherent structure breakdown, 

top right), t/T c = 12.11 (turbulence, bottom left), t/T c = 18.55 (decay, bottom right), respectively. 
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omplicated than HIT, but also more interesting for practical pur-

oses. Considering that DINOSOARS will ultimately be used to in-

estigate multiphase reacting flows, and keeping in mind that any

njection channel and most combustion systems involve walls, it is

bsolutely necessary to obtain a correct description of such config-

rations. Near-wall turbulent structures are typically much smaller

han in the center of the channel. Hence, using a refined grid

ear the wall is helpful. As already mentioned in Section 5.6.1 ,

his feature is implemented in DINOSOARS, and has been acti-

ated for the present test case. In order to check the accuracy

f DINOSOARS when employing the developed spectral solver de-

cribed in Section 5.4 on a non-uniform grid, the results obtained

or a turbulent channel flow with a friction Reynolds number
e τ ≈ 180 are compared with published DNS databases [62,63] .

hese databases were generated with two different spectral codes.

imulation dimensions and parameters considered for DINOSOARS

nd for the databases are summarized in Table 3 . The current sim-

lation is initiated by using a semi-empirical profile for the tur-

ulent channel flow and adding divergence-free turbulent fluctua-

ions on top of that profile. These initial fluctuations are again gen-

rated by IFFT using a VKP spectrum as described in Section 5.5 .

ompared to initialization with a random noise, preliminary tests

ave confirmed that this leads to a much faster convergence to-

ard statistically-steady results. The boundary conditions are cho-

en to be periodic in streamwise and spanwise flow directions ,

sing a uniform grid. Along the third direction, wall boundary
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Fig. 10. Evolution with time of normalized kinetic energy (left) and of its dissipation rate (right). 

Table 3 

Parameters of the turbulent channel flow. 

Data Re τ δ L x L z N x N y N z 
x + 
y + 
z + 

DINOSOARS 175 0.125 [m] 8 δ 4 δ 256 193 128 5.4 2.0 5.4 

MKM 178 1.00 [-] 4 πδ 4 πδ 128 129 128 17.7 4.4 5.9 

VK 180 1.00 [-] 4 πδ 4 πδ 384 193 192 5.9 2.9 3.9 

Note that the mesh sizes 
x + , 
y + , 
z + are in wall units, and that 
y + represents the grid size at 

the center, the grid being refined close to the walls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Comparison of the drag coefficient C d obtained 

by IBM in DINOSOARS with literature values. 

Reference Re = 20 Re = 40 

Body-fitted grid [65] 2.045 1.522 

Body-fitted grid [66] 2.111 1.574 

IBM [64] 2.144 1.589 

DINOSOARS, DF-IBM 2.140 1.597 

DINOSOARS, DB-IBM 2.104 1.581 
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conditions are used together with near-wall grid refinement.

The smallest grid spacing near the wall is 
y + 
min 

= 1 . 4 . Turbu-

lence statistics start being collected after reaching statistically

steady-state. The mean streamwise velocity in the (dimensional)

DINOSOARS simulation is 0.83 m/s. Fig. 11 shows the comparison

between DINOSOARS, Moser et al. (MKM) and Vreman and Kuerten

(VK) concerning mean velocity profile ( u + , Fig. 11 , left), as well as

velocity fluctuations and correlations ( Fig. 11 , right). An excellent

agreement is observed, showing that DINOSOARS is able to cor-

rectly describe turbulence with the spectral Poisson solver, even

for wall-bounded flows and using non-uniform grids. 

7.4. IBM validation: Flow past a circular cylinder 

In order to validate the implemented IBM approachs, the classi-

cal benchmark involving the flow past a circular cylinder has been

revisited [64] . The circular cylinder has a diameter of D c = 25 mm.

In order to avoid blockage effects, the cylinder is located at (16 D c ,

20 D c ) within a square domain with side length of 40 D c . Two differ-

ent Reynolds numbers (Re = U ∞ 

D c /ν= 20 and 40) have been con-

sidered by changing the free stream velocity U ∞ 

while keeping

ν = 1 × 10 −4 m 

2 / s . A fine regular grid with 1025 × 1025 points

has been used to discretize the domain. Fig. 12 depicts the stream-

lines of the flow around the cylinder with Re equal to 20 (left) and

40 (right), using DB-IBM (note that both methods, DB-IBM and DF-

IBM, deliver streamlines that cannot visually be distinguished). The

drag coefficients obtained by these simulations have been com-

pared with values from the literature in Table 4 , showing an ex-

cellent agreement. 

7.5. Chemistry and transport 

After successfully completing the validation of DINOSOARS for

turbulent non-reacting incompressible flows, and keeping in mind

that DINOSOARS shall be also used to investigate reacting con-

figurations, it is necessary to check that all models employed to

describe the properties needed for such cases (chemical kinetics,
hermodynamic parameters and transport properties) are indeed

orking accurately. For this purpose, comparisons with experimen-

al measurements will be carried out for configurations of growing

omplexity. 

.5.1. Ignition delay 

The first comparison allows one to check the correct implanta-

ion of the kinetic terms, showing that the coupling between DI-

OSOARS and Cantera 1.8 is working properly. Additionally, the ef-

ciency of the time integration for stiff processes can be assessed.

or this purpose, the ignition delay of a reacting mixture is com-

uted in a zero-dimensional simulation, comparable to an experi-

ent involving a homogeneous mixture. In such a case, all gradi-

nts appearing in the equations are zero, and the integration pro-

eeds only in time, leading to very fast computations. 

Since many different fuels are important for research and prac-

ical applications, two different combustibles have been consid-

red here, both burning in air: (1) C 2 H 4 (ethylene); (2) C 7 H 16 

 n -heptane). Different reaction mechanisms are available as a

atabase in the literature to describe oxidation of these fuels. Es-

ablished mechanisms have been retained for this validation, as

ummarized in Table 5 . 

Fig. 13 (left) shows the results obtained with DINOSOARS

oncerning ignition delay for ethylene combustion, compared to

 variety of published experimental data [71–73] . Please note

hat experimental results have been obtained under different



A. Abdelsamie et al. / Computers and Fluids 131 (2016) 123–141 135 

Fig. 11. Comparison between DINOSOARS, Moser et al. (MKM) and Vreman and Kuerten (VK) concerning the turbulent channel flow at Re τ � 180. Left: mean velocity. Right: 

velocity fluctuations and correlations. 

Fig. 12. Streamlines of flow past a circular cylinder using DB-IBM at Re = 20 (left) and Re = 40 (right). 

Fig. 13. Ignition delay obtained with DINOSOARS compared with experimental results. Left: C 2 H 4 /Air. Right: C 7 H 16 /Air. Note that the data have been scaled by the oxygen 

concentration in the left figure. 
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Table 5 

Reaction mechanisms employed to compute ignition delays. 

Mixture Mechanism Number of species Number of reactions 

C 2 H 4 /Air UCSD-2003 [67] 39 173 

UCSD-2005 [67] 46 235 

Luo et al. [68] 32 206 

C 7 H 16 /Air Patel et al. [69] 29 52 

Liu et al. [70] 44 114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Comparison of numerically obtained laminar flame speeds with experimen- 

tal measurements for ethylene/air flames. 
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conditions. Therefore, following a standard procedure in this case,

the results of Fig. 13 (left) have been scaled by the oxygen con-

centration in the mixture. A very good agreement is obtained, in

particular with the most complex mechanism [67] . However, the

computational time associated to the mechanism of [68] is con-

siderably shorter, while an acceptable agreement is still observed. 

Fig. 13 (right) shows the ignition delays obtained for n -heptane

in air, compared to published experimental data [74] . Again, the

most complex mechanism [70] leads to an excellent agreement

with the experiments, while the noticeably smaller (and thus com-

putationally faster) mechanism of [69] still leads to an acceptable

prediction, at least qualitatively. 

All results in this section have been obtained by using the split,

semi-implicit Runge–Kutta time integration relying on RADAU-5

(see Section 5.2 ). A fast but stable time integration has been ob-

tained for all conditions. 

7.5.2. Laminar flame speed 

Together with the ignition delay previously discussed, the lami-

nar flame speed S L observed when burning a fully premixed sys-

tem (also called in what follows fresh gas), leading to so-called

burnt gas conditions, is considered as the key quantity to prop-

erly describe gaseous reacting flows. This property can be eas-

ily computed using dedicated routines like those implemented

in Chemkin or Cantera. However, when using an unsteady solver

like DINOSOARS, a proper computation of S L must first be imple-

mented. 

Assuming that a quasi steady-state has been obtained with DI-

NOSOARS, all time derivatives are zero ( ∂ t (·) = 0 ). Since the posi-

tion of the flame is fixed within the computational domain under

such conditions, and following [20] , it can also be assumed that

the momentum in the fresh gas mixture (subscript 1) and in the

burnt mixture (subscript 2) are constant and equal to ( ρ1 S L ), where

S L is the (at first unknown) laminar flame speed. Consequently, by

integration of the species equation ( Eq. 4 ), the following equation

is obtained to compute the laminar flame speed out of correspond-

ing DNS simulations: 

S L = 

∫ 2 
1 ˙ ω k dx − ρ1 V k 1 Y k 1 + ρ2 V k 2 Y k 2 

ρ1 ( Y k 2 − Y k 1 ) 
. (74)

This equation delivers one value for each species (index k ).

Following values are the average obtained when considering the

obtained values of S L for all reactants and products. In order to

achieve steady-state conditions with DINOSOARS, an initially pla-

nar premixed flame configuration is initiated in a one-dimensional

domain, with a fresh gas mixture on one side and the correspond-

ing burned gas composition (separately computed beforehand with

Cantera 1.8) on the other side of the domain, first without any un-

derlying velocity. Realistic flame profiles progressively develop, af-

ter starting the simulation. After a prescribed number of iterations,

a first estimation of the flame speed is computed using Eq. (74) .

In order to stabilize the reaction front within the computational

domain, the computed value is then prescribed in the simulation

as fixed velocity inlet. This procedure is repeated iteratively until

the updated flame speed computed using Eq. (74) remains constant
ithin ± 5%. Using this approach, a quasi steady-state can be ob-

ained, with a stable flame established at a fixed position within

he one-dimensional domain. 

Fig. 14 shows the comparison of the numerically obtained flame

peeds with experimental measurements for ethylene. The integra-

ion in time relies again on the additive semi-implicit Runge–Kutta

ethod (see Section 5.2 ). Different independent experimental re-

ults have been involved in the comparison [75–77] . Fig. 14 shows

hat DINOSOARS reproduces with an excellent accuracy the lami-

ar flame speed of ethylene flames when using as reaction mech-

nisms either UCSD-2005 or Luo et al. The third scheme (UCSD-

003) shows noticeable deviations and will not be considered fur-

her. 

Concluding Section 7.5 , DINOSOARS coupled with Cantera 1.8

nd Eglib 3.4 is able to represent accurately the key properties

ontrolling combustion, even for complex fuels, provided corre-

ponding reaction schemes are available in the scientific literature.

hanks to the implicit time-integration solvers, stiff systems can

e treated in a stable but accurate manner. Until now, up to 46

pecies and up to 235 reactions (ethylene flames) have been suc-

essfully considered in DINOSOARS. 

. Preprocessing and postprocessing 

The parameters for a simulation run are basically defined in a

ext file. In order to get a user-friendly DNS code, a graphical user

nterface (GUI) has been developed for editing this settings file.

his GUI helps the user understand the large number of available

arameters and prevents them from choosing unreasonable or in-

ompatible values. The interface presents all available parameters

n a hierarchical structure. Parameters that are not relevant given

he current settings are hidden. Each parameter is displayed with a

uman-readable name, and a detailed explanation is available via

ooltip. 

Two levels of checks help to ensure that the user chooses sen-

ible parameter values: Input fields will not allow one to set values

utside a sensible range for each parameter, and a series of sanity

hecks is performed to detect problems with parameters that are

nterdependent. For example, when simulating a reactive flow with

ombustion, the low Mach number solver must be used. Sanity

hecks also warn the user about possible mistakes, such as restart-

ng the simulation from a previous snapshot instead of from the

eginning. Errors and warnings about parameter values are dis-

layed in the interface, along with hints on how to fix them, as
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Fig. 15. User interface DinoTamer for configuring a simulation run. Here, some errors and warnings were detected by the integrated sanity checks. The reasons for the errors 

and warnings are displayed in tooltips. The buttons on the left side allow the user to quickly jump to a group of settings and show which groups have errors (red) or 

warnings (yellow). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 

s  

w

 

I  

a  

p  

c  

a

 

m  

b  

r  

i  

I  

o  

e  

f  

p  

p  

c  

a  

u  

o  

o  

e

 

a  

a  

P  

U  

i  

q  

e  

a  
een in Fig. 15 . This makes it easier for new users to get acquainted

ith the software and its capabilities. 

For input/output operations the code relies on the MPI-based

/O routines provided by the 2DECOMP&FFT library. Full binary files

re only used for restarting the simulations. For file-based post-

rocessing, DINOSOARS saves results using parallel HDF5, directly

ompatible with many analysis tools (for example VisIt and Par-

View). 

Even if only relevant variables and parameters are stored in this

anner, the resulting files remain very large. For this reason, file-

ased post-processing is only feasible at greatly reduced tempo-

al or spatial resolution. Therefore, an on-the-fly co-processing us-

ng the ParaView Catalyst framework [78,79] has been developed.

mplementing a ParaView Catalyst adaptor for DINOSOARS allows

ne to define ParaView and VTK [80] processing pipelines to be

xecuted during the simulation. This gives us the freedom to per-

orm arbitrarily complex visualization and analysis tasks. The co-
rocessing, as the name implies, runs in parallel and in the same

rocesses as the simulation itself, such that DINOSOARS memory

an be accessed without copying or communication overhead. In

ddition to this, live visualization can be enabled. The running sim-

lation can then be opened in a ParaView client much like a file

n disk during post-processing. ParaView also allows for pausing

f the simulation in this mode, so that a time step can be fully

xplored before the simulation continues. 

Processing pipelines can be defined in Python using the Par-

View Python API. The ParaView Catalyst includes a plugin that

llows to export a pipeline defined in the ParaView client as a

ython script, which can then be manually adjusted if desired.

sed during the simulation, Python co-processing scripts are spec-

fied at launch time. If more control over the co-processing is re-

uired, pipelines can also be written in C++ and compiled into the

xecutable. In this case, the complete VTK and ParaView libraries

re available and arbitrary analysis and visualization tasks can be
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Fig. 16. Renders generated by ParaView Catalyst during tests for different iteration intervals. Top: Pipeline 1 renders a slice through the temperature field and the T = 

700 K isosurface with the local heat release (HR) color mapped onto the surface. The pencil domain decomposition is visible as gaps in the surface. Bottom: Pipeline 2 

computes the Takeno flame index and generates scatterplots of this value vs. heat release. As expected for a premixed combustion regime, the index has positive values. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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implemented. During the simulation, the Catalyst adaptor wraps

the DINOSOARS arrays into VTK data structures. Due to their sim-

ple structure, this is possible without copying or duplicating any

memory. These data structures are then passed on to the process-

ing pipelines. Depending on the configuration, a pipeline can be

executed after each simulation step, or in larger intervals. Results

are written to disk in the form of images or VTK data files, or they

can be viewed via the live visualization feature. 

To check that co-processing is working properly, two different

visualization pipelines have been executed during a simulation run.

The first pipeline simply renders a slice of the temperature field

as well as an isosurface of the temperature with the local heat

release color-mapped onto the surface. The second pipeline com-

putes the Takeno flame index ξ = ∇ Y F · ∇ Y O [81] for each grid

point and renders a scatterplot of this flame index vs. heat re-

lease, where Y F and Y O are fuel and oxidizer mass fraction, respec-

tively. Positive values of ξ denote a premixed combustion regime,

while negative values correspond to nonpremixed combustion. Ex-

ample images can be seen in Fig. 16 . These tests correspond to the

DNS of a premixed ethylene jet flame computed with 8.4 million

grid points, using 2048 cores on the SuperMUC. It was found for

instance that rendering each iteration generates a 16% overhead

in execution time, while a negligible overhead of less than 2% is

found when rendering every 5 iterations. 

Implementing an adaptor for ParaView Catalyst allows us to

perform on-the-fly co-processing in DINOSOARS. Using Python or

C++, analysis and visualization pipelines can be defined and exe-

cuted during the simulation run. Thus, a detailed insight into the

simulation can be obtained without writing huge amounts of data

to disk. 

9. Final application examples 

To conclude this work, two different application examples will

be presented: 1) a gaseous jet premixed flame, 2) spray combus-

tion in a turbulent environment. These two examples are very im-

portant benchmarks for research concerning in particular industrial

burners, internal combustion engines, gas turbines, and safety pre-

dictions. 

9.1. Turbulent jet flame 

The first case is particularly relevant for safety considerations.

A small, central hot gas jet comes into contact with a combustible
o-flow (stoichiometric ethylene/air mixture). It is then checked if

gnition occurs in the whole gas volume, or not. Burned gases are

njected in the central jet with a jet velocity ( U j ) of 180 m/s at

 temperature of 1800 K. A co-flow combustible mixture is in-

ected with a low velocity ( U co ) of 10 m/s and temperature of

00 K. The central jet has a width of only 0.28 mm, correspond-

ng for instance to a leakage. The kinematic viscosity of the co-

ow and of the central jet are νco = 1 . 53 × 10 −5 and ν j = 3 . 14 ×
0 −4 m 

2 /s respectively. This configuration has Reynolds number,

e = (U j − U co ) H/νco , of 3111 with characteristic jet time scale,

j = H/ (U j − U co ) , of 1.65 μs. The domain of 2 × 8 × 6 mm 

3 is

iscretized with 128 × 513 × 384 grid points to obtain a resolu-

ion of 16 μm in all directions. Inlet/outlet boundary conditions are

mplemented in the streamwise direction. Turbulence is injected

n the high-speed central jet through the boundary condition, us-

ng a top-hat filter. Fig. 17 depicts the time-evolution of tempera-

ure at three different instants: t = 30, 70 and 130 τ j , from left to

ight, respectively. It is observed that the combustible co-flow does

ot ignite in this particular configuration (the temperature increase

tays below 1 K), which can thus be deemed “safe.” This case has

een computed on SuperMUC using 46 700 CPU-hours with 2048

ores, including the time required for all I/O operations and on-

he-fly anal ysis. This simulation confirms the ability of DINOSOARS

o represent complex turbulent flames in a computationally effi-

ient manner. 

.2. Spray evaporating and burning in a turbulent environment 

DNS of the interaction between combustible droplets and tur-

ulence is considered here by randomly distributing 20 0 0 droplets

diameter a k = 11.0 μm, initial temperature, T k = 300 K), in a

entral slab of the DNS domain (size H = 0 . 6 mm). The entire do-

ain contains a hot oxidizer (air) at initial temperature T 0 = 1500

, pressure p = 3 bar and kinematic viscosity ν = 8 × 10 −5 m 

2 /s.

hile the surrounding gas within the central slab moves initially

ith a jet velocity U j = 100 m/s, the rest of the domain (surround-

ng co-flow) moves at a velocity U co = 10 m/s. The resulting initial

et Reynolds number is Re j = 675 . By initializing with an isotropic

urbulent flow field, the turbulence is triggered. The overall ar-

angement is equivalent to a temporally-evolving jet, the domain

eing periodic in streamwise and spanwise directions. The numer-

cal setting is shown in Fig. 18 (left). Simulations are conducted

ver a domain of size 2.4 × 5.0 × 5.0 mm 

3 , in spanwise, transverse

nd streamwise directions, respectively. The overall mesh contains
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Fig. 17. Volume rendering of temperature at three different instants: t = 30, 70 and 130 τ jet , respectively. 

Fig. 18. Spray evaporating and burning in turbulence. Left: schematic diagram of the considered configuration. Center: isosurface of mass fraction (0.015) of n -heptane in 

the gas phase and of temperature (1106 K) at t = 5 τ j , shown in gray and green, respectively. Right: isosurface of mass fraction (0.0174) of n -heptane in the gas phase and 

of temperature (1800 K) at t = 11 τ j , shown in gray and red, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article). 
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ore than 8 millions grid points to ensure a maximum mesh size

f 20 μm in all directions. In the present work, a n -heptane skele-

al mechanism accounting for 44 species and 114 reactions [70] is

sed for kinetics. Fig. 18 (center and right) show the time evolu-

ion of temperature and n −heptane mass fraction found in the gas

hase (thus, after evaporation). 

As expected from the physics of burning liquid droplets, the

urrounding gas temperature first decreases due to evaporation.

s observed in Fig. 18 (center), the liquid droplets start to evap-

rate into the gas mixture (gray isosurface), hereby consuming

nergy from the surrounding mixture, leading to a decrease in

he surrounding temperature (green isosurface). After a while,

gnition starts at different locations in the flow simultaneously,

s illustrated by the red isosurface in Fig. 18 (right). In this

gure, the red isosurface of temperature correspond to a tem-

erature of 1800 K and thus to ignited pockets, with an increase

f 300 K compared to the initial gas temperature ( T 0 = 1500 K).

his application demonstrates that DINOSOARS can be used to

onsider turbulent reacting two-phase flows. Further applications

ill be presented in dedicated publications in the interest of

pace. 
0. Conclusions 

A new software allowing the Direct Numerical Simulation of

urbulent reacting and/or two-phase flows, called DINOSOARS, has

een presented in this work. It contains both a low-Mach number

ormulation for reacting flows and an incompressible formulation

or non-reacting configurations. While reaching high order in space

nd time, it can be efficiently used on large parallel supercomput-

rs, as demonstrated for more than 10, 0 0 0 cores on SuperMUC.

he parallelization relies on an efficient 2D domain decomposition

hanks to the 2DECOMP&FFT library. The kinetics, transport and

hermodynamic properties are computed by coupling with Can-

era 1.8 and Eglib 3.4. For stiff systems, a fourth-order split semi-

mplicit Runge–Kutta approach based on Radau-5 and a third-order

dditive Runge–Kutta method have been implemented. Two im-

ersed boundary approaches are available in DINOSOARS: (1) a

irect boundary IBM is activated to describe complex geometries

n the DNS, and (2) a direct force IBM is used to represent large

articles for two-phase simulations, while small particles are de-

cribed as point-particles. All these features make DINOSOARS a

romising tool to investigate complex turbulent flows involving
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reactions and/or particles or droplets, as demonstrated at the end

of the article. 

The code has been carefully verified and validated by using a

variety of analytical solutions and experimental results. An excel-

lent agreement has been obtained for all test-cases. The authors

hope that this detailed description might provide useful guidelines

concerning verification and validation for other researchers devel-

oping high-accuracy simulation tools for turbulent reacting flows. 
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