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Figure 1: Mass separation of inertial particles in the DOUBLE GYRE. Left image: Mass (color-coded) that separates strongest
during integration over time T = 17. Center image: inertial particles of different mass are released at the cross in the left image.
In space-time their trajectories assemble a surface, with the purple line being its frontline—a so-called massline. The green line
is the particle trajectory with strongest separation (here, with diameter d, = 99 um). Right image: plot of difference to reference
particle, here the smallest inertial particle (diameter dp = 20um), which makes the temporal evolution of the separation apparent.

Abstract

The visual analysis of flows with inertial particle trajectories is a challenging problem because time-dependent
particle trajectories additionally depend on mass, which gives rise to an infinite number of possible trajectories
passing through every point in space-time. This paper presents an approach to a comparative visualization of
the inertial particles’ separation behavior. For this, we define the Finite-Time Mass Separation (FTMS), a scalar
field that measures at each point in the domain how quickly inertial particles separate that were released from
the same location but with slightly different mass. Extracting and visualizing the mass that induces the largest
separation provides a simplified view on the critical masses. By using complementary coordinated views, we
additionally visualize corresponding inertial particle trajectories in space-time by integral curves and surfaces.
For a quantitative analysis, we plot Euclidean and arc length-based distances to a reference particle over time,
which allows to observe the temporal evolution of separation events. We demonstrate our approach on a number of

analytic and one real-world unsteady 2D field.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1. Introduction

The study of inertial particles is an emerging field in flow
visualization. While traditional flow visualization aims for
insights on the dynamics of the flow itself, inertial parti-
cles are observed to understand the behavior of finite-sized
objects moving therein. This has numerous applications,
for instance in sand saltation modeling [SL99], soiling of
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cars [RSBEO1], visual obscuration in helicopter landing ma-
neuvers [KGRK14], formation of rain [Borl1] or even in
jellyfish feeding [PD09]. Among the many unresolved prob-
lems that center around inertial particles is the search for
an effective visualization of the differences between inertial
particle trajectories, for instance to locate regions in which
massless trajectories are similar enough to fall back on stan-
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dard techniques. In the context of this paper, comparative
visualization comprises both the qualitative and quantitative
comparison with reference particles, as well as the detection
of critical masses that cause a separation of differently sized
inertial particles. The latter plays a major role in rotorcraft en-
gineering [SGL10], as sand particles dragged into a rotor disk
cause mechanical wear and entrain further particles when be-
ing convected to the sediment bed, which severely hinders the
pilot’s view. For quantitative comparisons, common practice
is to plot the Euclidean distance between differently sized
inertial particles over time [Bor11], which however, suffers
from occlusion and is unaware of the behavior of particle
sizes in-between. Up until now, it was not possible to effec-
tively explore where mass separation occurs, how distinct it
is and which masses are separating. The difficulty of quanti-
fying trajectory differences and the integration-based nature
of separation detection make these problems challenging.

In this paper, we introduce Finite-Time Mass Separation
(FTMS). Inspired by the inertial extension [SH09, PD09] of
FTLE [Hal01,SLMO5], the idea is to release inertial particles
from the same location, but with slightly varied mass and to
observe their separation behavior over time. Inertial FTLE, on
the other hand, observes the separation due to spatial variation
of the seed point, which can lead to different answers. Locat-
ing the mass that produces the largest separation in FTMS
allows to extract and visualize critical masses. In addition,
we complement the visualization by two coordinated views
that provide detailed information on the mass-dependent par-
ticle trajectories released at a given seed point. In a plot view,
we use a new distance measure between inertial particle tra-
jectories that is occlusion-free and considers the actions of
particles in-between. This view allows to quantitatively mea-
sure absolute and relative differences, provides insights on
how separation evolves over time and allows to quickly lo-
cate separation events. In a domain view, we depict inertial
particle trajectories of unsteady 2D flows in 3D space-time,
which embeds the trajectories in the domain and allows to
see how they separate. By varying the mass, inertial particle
trajectories assemble a surface, on which separation can be
shown by visualizing its stretching.

This paper contributes a novel measure for mass separation,
called FTMS, and its comparison to inertial FTLE [SH09,
PD09]. Moreover, it enables quantitative measurements with
a new difference metric that avoids cluttering and a compari-
son with Euclidean distances, as well as a spatial embedding
of the separation on a surface in the space-time domain. With
this, we provide the first comprehensive study of the mass-
dependent behavior of inertial particles that answers: where
and when mass separation occurs, which masses are separat-
ing and what the separation looks like in the domain.

2. Background and Related Work

The following section lays the foundation by introducing into
the modeling of inertial particles and the abstraction from

the underlying equations of motion using the concept of a
mass-dependent flow map. Afterwards, we discuss related
work on visualizations in the field of inertial particles.

2.1. Modeling of Inertial Particles

The trajectories of inertial particles are determined by their
underlying equations of motion. Typically, they involve a
number of forces that act on the particles, such as the force
exerted by the flow itself, buoyancy, Stokes drag, the force
exerted due to the mass of the fluid moving with the parti-
cle and the Basset-Boussinesq memory term, cf. Haller and
Sapsis [HS08]. Today’s most accepted form of these forces
was described by Maxey and Riley [MR83] for small rigid
spherical particles. The properties of the solutions to their
equations of motion and the history of its corrections were
recently documented by Farazmand and Haller [FH15].

Depending on the application, several assumptions can be
made that simplify the equations of motion considerably. It is
important to note that the visualization concepts introduced in
this paper are independent of the chosen equations of motion.
For the examples given throughout the paper, we assume par-
ticles to be spherical and very small in size, which allows to
assume Stokes flow due to the small particle Reynolds num-
ber. Also, the particle density is assumed to be far higher than
the density of the surrounding fluid, which allows to neglect
buoyancy. Further assuming dilute flow, the particle motion
is dominated by drag forces, rather than particle-particle colli-
sion. Thus, we neglect collision handling and assume one-way
coupling, i.e., particles do not affect the surrounding fluid.
These simplifications are common and were used for instance
in [SGL10,PSGC11a, KGRK14,GT14,CGP*10,BBC*09,
BBC*11]. According to Crowe et al. [CST98], they lead to
the following equations of motion:

‘(%‘ = v(1) with x(0)=x¢ (1)
O U
T - ; +g with v(0)=vy (2

where u(x,¢) is a time-dependent flow field, v is the current
particle velocity, g is an (optional) gravity vector, Xo and
vo are the initial particle position and velocity, and r is the
particle response time. The response time r is characterized
by the diameter d), and density p, of the particle, as well as
the viscosity u of the surrounding fluid:

i dypp

18u

Figuratively spoken, the response time is the time required for
a particle released from rest in a gravity-free environment to
acquire 63% of the velocity of the carrying fluid, cf. [CST9S].
For all examples in the paper, we used as particle density pp
the density of dry sand, i.e., pp = 1600kg/m3. Gravity was
set to g = 0. The diameter d), varies between dp = 10um and
dp = 500um. Note that these equations of motion hold for
dp < My, with N being the Kolmogorov length scale. The
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surrounding medium was assumed to be air, thus the viscosity
was set to u = 1.532:10kg/(m-s). In the following, we
speak at times of mass and particle diameter, rather than
referring to the more general response time, since mass and
diameter are more accessible. All three directly relate to each
other, since density and viscosity are kept constant.

The equations of motion (1) and (2) can be rendered au-
tonomous by making particle position X, particle velocity v
and time ¢ state variables:

4 (* v X Xo
alv]= sxO=v g | with |[v](0)=[vo]| @
"\s 1 ! To

Viewing the problem in phase space, the state variables on
the left hand side are the attributes stored per particle, i.e.,
position x, velocity v and time 7. Trajectories of inertial parti-
cles appear as phase lines, which are in fact tangent curves
of the higher-dimensional vector field on the right hand side.
More details on the numerical integration [HS08] and an ap-
plication of this vector field was given in [GT14]. Alternative
approaches include the modeling of gravity and buoyancy as
external forces by the material derivative, cf. [BBC*09].

A recent report on experimental and computational fluid
dynamics of inertial particles in turbulent fluids was compiled
by Balachandar and Eaton [BE10]. Of interest in the inertial
fluid dynamics literature are problems such as direct numer-
ical simulations of jets [PSGC11a], stirring of sand during
helicopter maneuvers [SGL10], comparisons between experi-
mentally determined and simulated trajectories [OOGOS8] (de-
picted by Euclidean distances over time), energy dissipation
along trajectories [BBC*09], or the effects of inertial particles
on the underlying flow (two-way coupling) [PSGC11b].

2.2. Mass-dependent Flow Map

To abstract from the underlying equations of motion, Giin-
ther et al. [GKKT13] extended the concept of flow map ¢
(cf. [Hal01,SLMOS]) to inertial particles. They defined a mass-
dependent flow map ¢7 (X, r, vo) as a function that describes
where an inertial particle with response time r, seeded at lo-
cation (x,7), and with an initial velocity vo moves to during
integration in flow u over a time interval T. This formulation
hides the underlying equations of motions, which allows to
describe Lagrangian features in a generalized and abstract
way. Note that the continuity of the flow map’s derivatives
depends on the underlying particle model. If random events
such as collisions are neglected (as in our case), they are
continuous everywhere in the domain. In the following, we
consider all particles to be released from rest, i.e., vo = 0. For
brevity, we therefore shortly denote the mass-dependent flow
map for particles released from rest as 07 (x, 7).

2.3. Inertial Particles in Visualization

Integral curves proved to become one of the most important
concepts in flow visualization. Using the mass-dependent
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flow map notation, integral curves have been extended in
[GKKT13] for inertial particles. There is one class of integral
curves that only arises in the context of inertial particles,
which is called massline. It is assembled by releasing particles
from the same location at the same time, but with varying
mass. After a certain integration duration particles will drift
apart due to inertia. The locations they reach form a curve,
which can be expressed as:

m(r) = 07 (x, r) o)

Masslines are parameterized by the particle mass, which is
included in the particle response time r, Eq. (3). They are
continuous if the mass partial of the flow map is continuous.

Another important tool that was extended to inertial parti-
cles is the extraction of Lagrangian coherent structures (LCS).
A repelling LCS is a material structure that repels all parti-
cles, whereas an attracting LCS attracts them [HalO1]. These
definitions are invariant with respect to the reference frame
and therefore objective. Haller [Hal01] has demonstrated that
LCS can be extracted as ridges of the finite-time Lyapunov
exponent (FTLE) field. A number of variants to LCS calcula-
tion have been proposed in the literature, including localized
FTLE [KPH*09], a method based on streak surfaces [USE13]
and time line cell tracking [KER™ 14]. An overview can be
found in the FTLE benchmark of Kuhn et al. [KRWT12].
Inertial Lagrangian coherent structures (ILCS or pLCS) have
been defined in [SH09] and [PDO09] as ridges of an FTLE
computation based on the trajectories of inertial particles:

T T T
IFTLE(x, 1, T, r):%m - (d%(x,r) CWXJ))

dx dx

This scalar field measures the separation of nearby placed,
equally-sized particles. Standard FTLE is the special case for
massless particles, i.e., » = 0. As it turns out, the dynamics
of larger inertial particles become instable in areas of high
strain [SHO8], causing particles to spin away from attracting
ILCS due to their inertia rather than being attracted. Both
repelling and attracting ILCS have been computed in [SPH11]
in the context of jellyfish feeding.

Further work on inertial particles includes the visualization
of sand particle density on cars [RSBE(O1] and the extraction
of inertial vortex corelines [GT14].

3. Finite-Time Mass Separation

A so far unaddressed problem in flow visualization is the
comparative visualization of inertial particles. This problem
is quite challenging, as even from a single point in the domain
an infinite number of inertial particles can be released that
take different trajectories depending on their mass. Quantify-
ing their differences requires an adequate distance measure
and a study of the temporal evolution of these differences.
This, however, first of all requires to set a seed point. Unfor-
tunately, it is nearly impossible to predict ad-hoc when and
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Figure 2: Finite-Time Mass Separation (FTMS) of the Dou-
BLE GYRE for inertial particles with diameter d, = 99 um at
t=0and t=9.95.

where and for which mass interesting events occur in the do-
main. The key to the problem is to analyze the mass-induced
separation behavior of inertial particles, as a separation en-
tails the development of a difference. This insight leads us
to the definition of the Finite-Time Mass Separation (FTMS)
field. That is, we strive to quantify at every location in the
space-time domain, how quickly inertial particles of slightly
different mass separate if they are released from the same
location. Inertial FTLE, in contrast, describes how inertial
particles of the same mass separate if released in proximity,
which does not produce insights on the relationship between
different masses. Differences to inertial FTLE are discussed
later in Section 6.1. FTMS is computed by considering the
derivative of the flow map with respect to response time r,
which is determined by the mass of the particle, cf. Eq. (3):

dor (x,r)

1
FTMS(x,1,T,r) = < In 4

‘ ©

This scalar field measures the separation of inertial particles
that were released from the same location but with slightly
different mass. Considering Eq. (5), the field can be equiva-
lently computed from the magnitude of the first derivative of
a massline, released at (X, t), i.e., the massline’s stretching:

dm(r)

FTMS(x, 1,1, r) = %ln O

‘ @)

An example for an FTMS field is given in Fig. 2 for the
DOUBLE GYRE [SLMO5]. Similar to (inertial) FTLE, FTMS
is defined only for particles that do not leave the domain.

At a certain time ¢, the parameter space of the FTMS scalar
field is two-dimensional; it is spanned by response time r and
integration duration T. For an overview, it is interesting to
identify for every space-time location, the response time r*
with largest separation, with r* € [rin, Fmax]:

r* = argmax FTMS(x, ¢, T, r) (8)
r
Fig. 3 shows its corresponding diameter. As an inset in the
bottom right corner, we visualize the respective separation:
maxFTMS(x, ¢, T) = FTMS(x, ¢, T, ) )

The response time interval [ryn, rmax] is sampled by a Hal-
ton sequence [Hal60] to progressively refine the solution, as

dp i 20um e—

s 200 um

0 e | 4

Figure 3: Maximal Finite-Time Mass Separation (maxFTMS)
in the DOUBLE GYRE at t = 0 after duration T = 9.95.

shown in the accompanying video. The computation is ter-
minated by the user or after a certain number of iterations.
The bounds of the interval are specified by the user as well or
might be determined by the underlying equations of motion.

Depicting the maximal separation condenses the informa-
tion into a visualization that only depends on duration T,
which can be explored by an animation. Of course, this only
provides an overview and might not necessarily extract the
most interesting separation event. At longer integration time
several events might occur and if they exhibit similar separa-
tion strength it becomes less clear which to show, see later
Section 6.5. For this reasons, maxFTMS cannot replace the
detailed inspection of the two-dimensional parameter space.
Providing the largest separation at a location, however, serves
as a starting point for further investigations. Other separating
masses can be observed in the views that are described next.

4. Comparative Visualizations

Once a seed point is found, we investigate the behavior of
differently-sized inertial particles released at this location.

4.1. Qualitative View

The mass-dependent flow map o7 (x, r), as introduced in
Section 2.2, has four parameters. Varying one of them and
keeping the others constant produces four classes of integral
curves [GKKT13]. Among those is the massline from Eq. (5),
which connects the locations that were reached by differently-
sized inertial particles, i.e., particles with a varying response
time r, chosen from an interval [ryin, Fmax]. Varying two of
the parameters similarly produces integral surfaces. In our
visualization, we vary the response time r and integration
duration 7T to depict the temporal evolution of the massline
(here, the front line), which forms a mass-path surface in
space-time as shown in Fig. 4. Thereby, the red and green
axes are spatial dimensions and the blue axis is time.

We color-code the particle diameter on the surface and
illustrate individual trajectories by an adaptive stripe pattern,
as in [HGH*10]. The stripe spacing and the insertion of lines
in between them are an indicator for separation. The front line
of the surface is a massline (purple). It depicts the location
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(a) Euclidean distance.

(b) Absolute arc length distance.
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Figure 5: Distance plots over time in the DOUBLE GYRE, showing the temporal evolution of the difference to the smallest inertial
particle (r = 20um). As in Fig. 4, with selected diameter dp = 99 um, T = 9.95 and the seed point (x, t) = (0.45417, 0.5675, 0).

dp i 20 um w—

Figure 4: Space-time domain of the DOUBLE GYRE in which
inertial particle trajectories form a mass-path surface. The
purple line is a massline, the green line depicts the trajectory
of the most separating inertial particle, here with dp = 99 um,
T =9.95 and seed point (x, 1) = (0.45417,0.5675, 0).

of inertial particles after the currently selected integration du-
ration. The user can further select a certain particle diameter
for closer inspection. We highlight its corresponding particle
trajectory by a green line. Color-coding, stripe patterns and
highlighting selected lines are all implemented in the pixel
shader of the surface. Alternatively, separation on a manifold
could be visualized by space-time LIC as in [BSDW12].

4.2. Quantitative View

Another aspect is the mass distribution along a massline. Vi-
sualizing its temporal evolution can likewise show separation.
Thus, in an additional view, we plot the integration duration
7 of inertial particle trajectories vs. a specified distance mea-
sure €, which measures the difference to a reference particle.
Again, we color-code trajectories by their diameter. In these
plots, a uniform sampling of the response time interval shows
separation between the lines by their vertical distance.

Euclidean distance: Bord4s et al. [BBK*08, Bor11] mea-
sured the distance between experimentally traced particles
by Euclidean distance, which was also used to compare ex-
perimental and simulated [OOGOS] particle positions. Since
experiments are conducted with a finite number of differently
sized particles, there is no information on the behavior of par-
ticles with masses between them. In this paper, we measure
the distance to the smallest inertial particle (r = ry;p):

8Euclideam(r) = | }¢:(X7 r) _¢;‘E(X7rmin)” (10)
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Fig. 5a gives an example for the space-time domain shown
in Fig. 4, illustrating the split of particles that hit the do-
main boundary. While this measure can capture periodicity
of events, e.g., recurring proximity, it suffers especially at
longer integration times from occlusion and cluttering, which
is demonstrated later in Section 6.3.

Arc length distance: To overcome the limitations of the
Euclidean distance measure, we propose to measure the arc
length of the massline that connects the two particles.

" | dm(s
gArclength(r) :/ ( )
Tmin

s ds an
Such connecting massline exists only iff the particles were
seeded at the same location at the same time. In contrast to Eu-
clidean distance, this measure accommodates for the behavior
of the masses in between and it monotonically increases with
increasing response time, which avoids occlusion since no
overlap occurs in the plot. For plotting this measure, we use

two different normalizations. We either normalize the error by
EArclength (r)

the integration duration to account for the growth
of the line over time (as in Fig. 5b), or we use the relative po-

_Earctengh (1) to display the evolution of the distribution
EArclength (rmax )

of masses along the massline (see Fig. 5c).

sition

5. Implementation

Interaction is a crucial aspect in exploration tasks, which
requires fast updates on parameter changes. The integration
of inertial particles according to Eq. (4), the computation of
the mass-path surface in the domain view and the distance
plots are all implemented on the GPU, which comfortably
achieves interactive frame rates. The maxFTMS field, how-
ever, is precomputed, which takes several minutes as listed
later in Section 6.4. We discretize the space-time domain of
the maxFTMS field onto a regular grid (resolution given in
Section 6.4) and progressively sample the mass range. On
the GPU, we therefore release inertial particles in the domain
and integrate FTMS for the given time interval. In every time
slice of the maxFTMS field, we check if the currently consid-
ered mass has larger separation than any previously processed
mass and store it if this is the case. Finally, the field is stored
as a 3D voxel grid (two spatial dimensions and time), with
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(a) At selected point, d, = 64um (b) FTMS value for d, = 64um (c) Trajectory with maximal separa- (d) Massline arc length-based dis-

has max. separation (maxFTMS). is indeed high.

tion on the mass-path surface.

tance plot to a reference particle.

Figure 6: FORCED DUFFING data set at integration duration T = 10.45. The seed point is at (x, #) = (1.294, —0.22133, 0).
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(a) At selected point, d, = 69 um (b) FTMS value for d, = 69um (c) Trajectory with maximal separa- (d) Massline arc length-based dis-

has max. separation (maxFTMS). is indeed high.

tion on the mass-path surface.

tance plot to a reference particle.

Figure 7: FORCED-DAMPED DUFFING data at integration duration T = 10.1 and seed point (x, 1) = (—1.42613, —1.41141, 0).

two entries per cell: the maximal mass and its separation. At
runtime, the precomputed maxFTMS and FTMS fields can
both be streamed to the GPU for interactive display.

6. Results and Evaluation

We tested our method on a number of analytic and one real-
world data set, which are briefly described in the following.
In advance, one general note on the units: all domain sizes
are assumed to be in meters and time is in seconds.

Double Gyre. The unsteady 2D DOUBLE GYRE [SLMO5]
became a well-known benchmark data set for the study of
particle separation by means of FTLE. We used the form:

—0.17 sin (f(x, ) ) cos(yT)
0.1 cos (f(x, 1)) sin(ym) & £(x, z)) 12

with f(x, 1) = a(t)x> + b(t) x and a(r) = 0.25sin(t7/5) and
b(t) =1—0.5sin(rm/5). We consider the domain D x T =
[0,0] x [2, 1] x [0, 30]. Examples are shown in Fig. 1 for
T = 17 and throughout Sections 3 and 4 for T = 10.

e =

Forced Duffing Oscillator. The FORCED DUFFING oscilla-
tor in an example for a dynamical system that experiences
chaotic behavior [HS11]. It can be described and visualized
as an unsteady 2D vector field of the form:

u(x, y,1) = ( Y ) (13)

x—x° +0.1sint

here, in the domain D x T = [—2,2]? x [0, 20]. In Fig. 6a,
we show the maxFTMS field and select a seed point. At this
seed point, particles with diameter d;, = 64 um show largest
separation. For this diameter, we depict the FTMS field in
Fig. 6b. In the space-time domain in Fig. 6¢c, a mass-path
surface is released from the seed point. The trajectory with
diameter dp = 64 um is highlighted and turns out to run to-
ward a separation point, i.e., a saddle in the inertial dynamics
that causes particle separation. The temporal evolution of the
massline particles’ distance to the smallest inertial particle is
shown in Fig. 6d, indicating the separation event as well.

Forced-Damped Duffing Oscillator. A more general form
of the oscillator is the FORCED-DAMPED DUFFING oscilla-
tor [HS11], which can likewise be described as an unsteady
2D vector field:

- y
u(x, Y t) - (x—x370,25y+0.4005t) (14)

here, in the domain D x T = [2.5, 2.5]% x [0, 20]. Fig. 7a
depicts the maxFTMS field at T = 10.1. At the selected point,
a particle with diameter d, = 69 um shows the largest sep-
aration. The corresponding FTMS field is shown for this
diameter in Fig. 7b. From the selected point inertial trajecto-
ries are released, which assemble in space-time a surface, see
Fig. 7c. The trajectory with largest separation is shown on
the surface, as well as in the distance plot in Fig. 7d.

Square Cylinder Flow. The SQUARE CYLINDER flow
[CSBIOS] is a 3D time-dependent flow around an obstacle.
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maxFTMS

(a) Maximal separation at selection for dj, = 380 um.

(b) Trajectory with maximal separation on the mass-path surface.

14
2 1 £Arc[englh(r)
T

40 T 70
(c) Massline arc length-based distance plot.

Figure 8: SQUARE CYLINDER data set at integration duration
T = 64 and seed point at (x, ) = (7.664, 3.77067, 40).

It is quite uniform along one dimension, which allows to
select one slice and treat it as 2D unsteady flow. As visible
in the maxFTMS field in Fig. 8a, large separation occurs for
particles that flow toward the obstacle and for particles that
enter the vortices of the von Kdrmén vortex street, since there,
rotational movement amplifies the effects of inertia, leading
to separation. The latter can be seen by the alternating and pe-
riodic separation fronts, running toward and past the obstacle.
Selecting one seed point, both space-time domain in Fig. 8b
and distance plot in Fig. 8c show multiple separations along
the massline. After integration time T = 64, the strongest
arises for a diameter d, = 380 um, which is highlighted.

6.1. Comparison between Inertial FTLE and FTMS

Inertial FTLE depicts the separation due to spatial variation of
the seed point. The separation due to a varying mass is shown
by FTMS. Frequently, both measures have a high correlation,
but we observed distinct features that are visible in FTMS
only. For instance, in Fig. 9, we see valley lines in FTMS,
which do not appear in IFTLE. They may even cross an
IFTLE ridge. This means, if a separation of nearby particles
occurs, particles with different mass that were released from
the same location may still stay together—and, vice versa. In
fact, there are two sources of separation to consider: varying
mass (FTMS) and variation of the seed point (IFTLE). When
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IFTLE 1
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Figure 9: Comparison between inertial FTLE (IFTLE) and
FTMS for diameter dp = 99um att =0 and T =9.95. A
corresponding point is selected, showing that ridges in IFTLE
and FTMS frequently correlate. However, notice the absence
of the white valley lines in IFTLE that even cross ridges.

studying the differences between masses, FTMS is more
suitable. Further we found in this example that the separation
due to varying mass is stronger, as visible by the color map.

6.2. Low and High Values in FTMS

FTMS depends on the particle response time, which is deter-
mined by the particle size. In Fig. 10, we examine this depen-
dence by observing FTMS for different particle sizes at the
same seed point. For a particle with diameter dp = 89.9 um
the seed point has a low FTMS value, i.e., we have low sepa-
ration. In the space-time domain, this relates to a trajectory
that is located in the fold of the mass-path surface. In this
data set, this is a place of particularly low separation. In
the difference plot, the low separation leads to a strong color
gradient. For another diameter d, = 73.2 um the very same
seed point has a high FTMS value. In both space-time domain
and difference plot the separation becomes apparent, as the
selected trajectory runs toward a saddle, causing a separation.
As shown by diameter d = 100 um, a high FTMS value does
not necessarily relate to saddle-like separation. Similar to
FTLE, a difference can also occurs due to shearing. Another
example for a saddle-like separation was shown in Fig. 6.

6.3. Comparison between Distance Plots

Section 4.2 introduced two distance measures between differ-
ently sized particles: Euclidean distance, Eq. (10), and the arc
length of the connecting massline, Eq. (11). In the following,
we compare them in more detail at longer integration time.
In Fig. 11a, the Euclidean distance between differently-sized
inertial particles and the location of a reference particle is
shown in the DOUBLE GYRE sequence. In this data set, par-
ticles are confined in a closed domain and repeatedly flow
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Figure 10: Comparison of different masses that cause small and strong separation, released from the same seed point in the
FORCED DUFFING data set at integration duration T = 10.45. The seed point is at (x, 1) = (1.00496, 0.43565, 0).

against a wall, which causes them to split up. These periodic
separation events, as well as the recurring particle proxim-
ity can be seen in the Euclidean distance plot. However, the
longer particles are integrated the more chaotic the distance
plot becomes, due to massive occlusion and clutter.

For this reason, we proposed the usage of the arc length
distance along the connecting massline to measure the dis-
tance to a reference particle, here, the smallest inertial particle.
Fig. 11b depicts the temporal evolution of the relative posi-
tion of a mass along the massline. This plot shows separation
events clearer, because occlusion cannot occur. But, as arc
length increases over time, separation events become rela-
tively less prominent. At a certain time, multiple masses can
experience separation, which is likewise visible.

6.4. Performance

We used an Intel Core i7-2600K CPU with 3.4 GHz and 24
GB RAM, and an Nvidia Quadro K5000 GPU with 4 GB
VRAM. The computation time of the maxFTMS field is in

the order of minutes and depends on spatial resolution, inte-
gration duration and the number of sampled masses. We pre-
compute the sequence on the GPU (see Section 5) and store it
to disk. Preprocessing timings of the maxFTMS time series
are listed in Table 1. For the DOUBLE GYRE the preprocess-
ing of the full time and mass range took less than two minutes.
The FORCED DUFFING had twice the spatial resolution and
thus took roughly twice as long. In the FORCED-DAMPED
DUFFING, we increased the number of samples in the mass
dimension. In our implementation, the sampling of masses is
serialized, which linearly increases the number of compute
kernel invocations. Thus, with four times more masses, the
computation time increases by factor of four. It can further be
seen that the smaller temporal resolution had computationally
almost no effect. This is because it only reduced the number
of max() operations due to fewer time slices. The dominating
factor is the fourth-order Runge-Kutta integration of Eq. (4),
which was on the same time range for both Duffing oscillators.
The time range was given in the data set descriptions in Sec-
tion 6. The SQUARE CYLINDER flow was the slowest, since

(© 2015 The Author(s)
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Figure 11: Periodic events for a long time range in the DOU-
BLE GYRE: Euclidean (top) clutters eventually. Integration
duration 7 is in [0, 80], seed point at (0.83087, 0.28715, 0).

Data set | X Y T M maxFTMS
DOUBLE GYRE 800 400 200 128 1.68
FORCED DUFFING 800 800 200 128 4.75
F-DAMPED DUFFING | 800 800 100 512 18.26
SQUARE CYLINDER | 800 400 200 256 61.20

Table 1: Space-time resolution of the maxFTMS grid X x
Y x T, number of sampled masses M and the computation
time of maxFTMS in minutes.

here flow vector values are sampled from a 3D texture (2D
unsteady), rather than being evaluated analytically. In this
case, the runtime is bound by fetches from texture memory.

6.5. Limitations

For long integration times, strong separation may occur for
multiple masses, as shown in Section 6.3. The maxFTMS
field depicts only the mass with strongest separation. If multi-
ple masses have an equally large separation, an effect compa-
rable to z-fighting [AMHHOS] occurs, see Fig. 12. The longer
the integration, the more likely this artifact becomes.

Also, the mass with maximum separation might not neces-
sarily be the mass that is most interesting, because separation
might also happen due to shearing—an artifact known from
FTLE. However, while further local maxima of other masses

(© 2015 The Author(s)
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Figure 12: Multiple masses exhibit a similarly strong separa-
tion after integration duration T = 30 in the DOUBLE GYRE.

might be hidden behind the global one, our method allows to
rule out areas in which no separation occurs at all.

7. Conclusions and Future Work

In this paper, we presented an approach to a comparative
visualization of inertial particle trajectories. For this, we intro-
duced the Finite-Time Mass Separation (FTMS), a scalar field
that measures the separation of inertial particles that were re-
leased from the same location but with slightly different mass.
By extracting for every location in space-time the mass that
induced the largest separation, we provided a guiding tool
that allows to quickly locate seed points and masses at which
differences in inertial particle trajectories can be observed. In
additional coordinated views, we displayed inertial particle
trajectories at a specified seed point in space-time by integral
curves and surfaces. Moreover, we plotted differences to a ref-
erence particle over time to observe the mass distribution and
the temporal evolution of possibly further separation events.

The next step for future work is the third spatial dimen-
sion. Conceptually, the definition of FTMS and the plot view
directly carry on into 3D. In the domain view, time cannot
be visualized by a spatial axis anymore, which relates to the
problem of visualizing path surfaces in 3D, i.e., occlusion
and self-intersection become more prominent visualization
problems. Also, the depiction of the maxFTMS field needs an
extension. It probably reduces to a volume rendering problem,
in which two attributes should be shown: the maximum sepa-
ration and the corresponding mass. In 3D, the computation of
the maxFTMS field would be quite expensive. An accelera-
tion of its computation therefore seems a worthwhile topic for
future work. Further, the relation with IFTLE deserves more
research, possibly including a unified separation measure that
accounts for both spatial and mass variation. Another aspect
to study is the comparison of trajectories that were computed
from different particle models or other equations of motion to
see if certain simplifying assumptions can actually be made.
Also the comparison of simulated and measured trajectories
is an important task. Both require different distance measures,
as for those, there are no connecting masslines.
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