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Abstract— Star coordinates is a popular projection technique from an nD data space to a 2D/3D visualization domain. It is defined
by setting n coordinate axes in the visualization domain. Since it generally defines an affine projection, strong distortions can occur:
an nD sphere can be mapped to an ellipse of arbitrary size and aspect ratio. We propose to restrict star coordinates to orthographic
projections which map an nD sphere of radius r to a 2D circle of radius r. We achieve this by formulating conditions for the coordinate
axes to define orthographic projections, and by running a repeated non-linear optimization in the background of every modification of
the coordinate axes. This way, we define a number of orthographic interaction concepts as well as orthographic data tour sequences:
a scatterplot tour, a principle component tour, and a grand tour. All concepts are illustrated and evaluated with synthetic and real data.

Index Terms—Start Plot, Multivariate Visualization, Visual Analytics

1 INTRODUCTION

Projections of data points from a high-dimensional data space to a
2D (or 3D) visualization space are a common approach to visualize
multi-parameter data. Such projections have to be carefully chosen.
Generally, many projections are available, making the automatic or in-
teractive choice of relevant ones a challenging task. Clearly, any pro-
jection causes a loss of information because many nD data points are
mapped to the same 2D location. However, a good projection should
only show properties of the data, not properties of the projection.

There are two common projection techniques used in multi-
parameter data visualization: projective and affine projections. Pro-
jective projections map straight lines to straight lines and preserve the
cross ratio of four collinear points [8]. Examples are RadViz [13, 14]
and its modifications, as shown in [5]. Fig. 1(a) gives an illustration
of a projective projection from a 3D data space to a 2D visualization
plane. It is defined by placing the plane into 3D space and setting a
projection center out of the plane. The two spheres depict points in
data space which are mapped to ellipses in 2D. Note that a transla-
tion of the data influences location size and shape of the projections:
the closer the spheres come to the projection center, the larger is their
projection.

Affine projections map straight lines to straight lines and preserve
the ratio of three collinear points [8]. Prominent examples are star co-
ordinates. Fig. 1(b) shows an affine projection from 3D to 2D which
is defined by setting a projection plane and a projection direction out-
side the plane. Also here, spheres in the data domain are mapped to
ellipses.

Both projective and affine projections map points on an nD sphere
onto ellipses of arbitrary aspect ratio and size. This means that the user
can hardly make assumptions about the shape of an nD point cluster
just from the shape of its projection. Moreover, there is no direct re-
lation between the distance of two points in nD and in the projection:
clearly, two points close to each other in the projection can be far away
from each other in nD. Unfortunately, also the opposite is true: two
points close to each other in nD can be far away from each other in the
projection. Fig. 1(c) gives an illustration.

The main idea of this paper is to restrict the projections to a certain
subset of affine projections: orthographic projections. They have the
property that nD spheres of radius r are mapped to circles of the same
radius r. Furthermore, the distance between two points in the projec-
tion is not larger than their distance in nD: points close to each other in
nD are also close to each other in the projection. Fig. 1(d) illustrates
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an orthographic projection from 3D to 2D: it is an affine projection
defined by placing a plane with the projection direction perpendicular
to it.

Fig. 1. (a) Projective projection from 3D data space to a 2D visualiza-
tion plane. (b) Affine projection from 3D to 2D. (c) Two close points
can be far away in projection. (a-c) Non-orthographic projections lead
to distortions, which negatively effect the visual analysis process. (d)
Orthographic projection from 3D to 2D. Ratios and sizes are preserved.

Our approach assumes a metric in the n-dimensional data space,
i.e., that the different dimensions are comparable to each other. This
is a strong condition and not always fulfilled for all data sets. For
some data sets, the dimensions have the same physical units, making
the assumption of a metric space obvious. For many data sets, the
dimensions do not have an obvious relation/scaling to each other. In
this case, a manual normalization of the dimensions creates a metric
data space. Although this normalization is sort of artificial, many well-
established techniques for data analysis and visualization use the same
assumption, such as scatterplot matrices and PCA. Because of this,
we consider the artificial creation of a metric data space by dimension
normalization a standard approach.

We extend the concept of star coordinates to orthographic projec-
tions. Star coordinates are defined by setting n coordinate axes in
the 2D visualization space. We provide conditions under which a
layout of coordinate axes gives an orthographic projection. Further-
more, we provide algorithms for an interactive manipulation of the
coordinate axes under the constraint of remaining orthographic. Also,
we describe an approach to smoothly interpolate between two ortho-
graphic projections under the same constraint. Both approaches are
based on a repeated non-linear optimization in the background of ev-
ery modification. For this, we discuss several numerical approaches.



There are some well-established projections which are orthographic
by definition: scatterplots and PCA. Hence, we incorporate them into
our framework. Furthermore, we present different ways for an or-
thographic tour visualization: orthographic scatterplot tours (defin-
ing smooth orthographic paths between all scatterplots), orthographic
PCA tours (describing smooth paths through different PCA projec-
tions), and an orthographic grand tour (by defining a space-filling
curve in the space of all orthographic star plots). We also show that
orthographic star plots can straightforwardly be extended to 3D star
plots. We test our approach on a number of synthetic and real data
sets and show the advantages compared to traditional projection tech-
niques.

2 RELATED WORK

A number of visualization techniques exist in order to visualize high-
dimensional data. Some comprehensive introduction in visualization
of nD data is offered, amongst others, in [16, 12]. The focus of our
paper are projection-based visualization approaches.

Affine projections: star coordinates are introduced by Kandogan
et al. [18, 19]. They define a multivariate projection from nD data to
a 2D visualization domain. It yields a scattered visualization similar
to bivariate scatterplots, but – in contrast to them – they represent a
multivariate embedding of the data, allowing a multivariate visual data
analysis. Interaction is possible by placing and moving n coordinate
axes in the visualization domain. Star coordinates have been applied
in [3, 21], and for the exploration of continuous attribute spaces in
[22]. 3D star coordinates, e.g., from Shaik and Yeasin [26], use a 3D
visualization domain.

Projective projections: RadViz, proposed by Hoffman et al. [13,
14], is another projective visualization technique similar to star coor-
dinates but with an additional weighting factor, which is based on an
underling spring model. A variation of it is known, in order to reveal a
closed free-form surface as visual representative of data, from Theisel
and Kreuseler [27]. Furthermore, a normalized version of RadViz is
given, and strictly investigated for their ordering properties by Daniels
et al. [5] ([5] also shows that RadViz is actually a projective projec-
tion). The projection properties of RadViz (e.g., w.r.t. distortions)
has been investigated by Lenka [23], DiCaro et al. [6], or Novakova
et al. [24, 25]. In fact, these papers contain a number of approaches
to keep the distortions induced by the projection small. We focus on
preserving the property of having an orthographic projection.

Projection selection and tours: Based on such low-dimensional
projections, Friedman et al. [11, 10] proposed strategies to get low-
dimensional embeddings with patterns of interest for nD data. Asimov
extended these approaches to the grand tour [1]: a sequence of low-
dimensional projections that make a complete view of the data over
time feasible. Cook et al. [4] developed some interesting variations of
it. We extend this concept to an orthography-preserving version of the
grand tour and further data tours.

3 APPROACH

We start with a short description of traditional 2D star co-ordinates. An
nD point m = (m1, . . . ,mn)

T is projected onto a 2D point p = (x,y)T

by a matrix multiplication

p = A m

where A is a 2×n matrix

A =

(
x1 x2 . . . xn
y1 y2 . . . yn

)
(1)

which completely defines the projection. The entries of A have a
nice interpretation: defining pi = (xi,yi)

T for i = 1, . . . ,n, the vectors
(pi−0) describe the projections of the nD coordinate axes into the 2D
domain (0 is the 2D origin). The axes (pi − 0) are either placed in
certain setups (such as a radial alignment), or they can interactively be
modified by moving the points pi.

In order to find conditions of A for defining orthographic pro-
jections, we introduce two nD vectors consisting of the x- and y-
coordinates of all pi, respectively:

x = (x1, . . . ,xn)
T , y = (y1, . . . ,yn)

T .

An orthographic projection can be described as concatenation of a ro-
tation in nD and a subsequent projection onto the first two coordinate
axes, i.e., a “cutting-off” of the 3-rd to n-th coordinate:

A =

(
1 0 0 . . . 0
0 1 0 . . . 0

)
R (2)

where R is an n× n rotation matrix. This means that the columns of
R build an orthonormal system: all column vectors have unit length
and are perpendicular to each other. Note that in (2) large parts of R
do not have any influence on A. In fact, only the first two lines of
R are relevant. We use a basic property of rotation matrices: if R is
a rotation matrix, then its transposed RT is a rotation matrix as well.
Since (1) and (2) give

RT = (x,y, . . .),

the condition for A being orthographic is

||x||2 = 1, ||y||2 = 1, < x,y >= 0, (3)

where < ∗,∗ > is the scalar product. From this we define an ortho-
graphic energy which quantized how far away a matrix A is from being
orthographic:

e(A) = (||x||2−1)2 + (||y||2−1)2 + < x,y >2 . (4)

Note that e(A) ≥ 0, and e(A) = 0 iff A is orthographic. We subse-
quently use the symbol Aπ to address such an orthographic projec-
tion, i.e., [A = Aπ ]⇔ [e(A) = 0]. The larger the energy e, the more
distorted an nD shape is under projection. Figure 2 illustrates this. On

Fig. 2. Schematic illustration of Orthographic Energy: (top) Energy
graph e depending on different projections A. (bottom) Projection results
of nD spheres related to certain energy levels. The larger the energy,
the stronger the distortion gets.

top, a potential energy graph e is plotted. At the bottom, three samples
(green, yellow, orange) are given, representing different axis config-
urations. Agreen has a minimum energy e(Agreen) = 0 and shows no
projection-based distortions. Consequently, this projection is ortho-
graphic. In contrast, larger energy yields stronger distortions. Please
compare Ayellow and Aorange. Both radii and size are unfavorably dis-
torted under projection. For searching for Aπ , minimizing e(A) is
required. For that, non-linear optimizers are necessary, since e(A) is
of polynomial degree 4 in the components of A.

3.1 Revealing 2D Orthographic Star Coordinates
An arbitrary start configuration of axes A does not yield orthographic
star coordinates (OSC) in the vast majority of cases, i.e., a random con-
figuration equates to non-orthographic star coordinates (NSC), which
do not fulfill the conditions of Eq. (3), i.e, e(A) > 0. The question
arises how an OSC can be efficiently revealed from an initial NSC.
Subsequently, two techniques are presented.



3.1.1 Revealing 2D OSC by Reconditioning
The first approach is a geometrical approach, based on the Gram-
Schmidt process [20], in order to reconstruct the necessary conditions
geometrically. For this, the conditions of Eq. (3) are restored step by
step in order to transform a configuration of axes A = (x,y)T , which
give an NSC, into an axes configuration Aπ , which give an OSC.

First, the condition that x is orthogonal to a certain vector yπ , i.e.
< x,yπ >= 0, is restored with

yπ = y−< y,
x
||x||

>· x
||x||

↔ < x,yπ >= 0.

Then, the condition of having an Euclidean norm of one can be easily
reconstructed by normalizing the axis with

xn =
x
||x||

and yπ
n =

yπ

||yπ ||
↔ ||xn||= ||yπ

n ||= 1.

Please note that vectors xn, yπ , and yπ
n lie in the same plane that is

spanned by x and y in nD. Finally, the transformation from A to Aπ is
given by

A→ Aπ :=
(
xn , yπ

n
)T

.

This geometry-based reconditioning does not need any parameters and
can be done with low costs of O(n).

3.1.2 Revealing 2D OSC by Energy Minimization
The above-mentioned orthographic energy measure e(A) of Eq. (4)
gives us an alternative approach to transform an initial A into Aπ by
performing an iterative gradient descent-based energy minimization:
e(A)→ min. Let be ∇e the gradient of energy e(A) given as the fol-
lowing matrix nomenclature

∇e =
(

ex1 ex2 . . . exn

ey1 ey2 . . . eyn

)
,

with its partial derivatives ex j = ∂e/∂x j and ey j = ∂e/∂y j given by

ex j = 4·x j·(||x||2−1)+2·y j·< x,y > and

ey j = 4·y j·(||y||2−1)+2·x j·< x,y > . (5)

Then, successor Ai+1 that minimizes energy e is reachable via an Euler
step based on Ai as:

Ai+1→−µ·∇e(Ai)+Ai,

with µ being the step size. Please note that gradient ∇e points in di-
rection of the steepest ascent of e. Therefore, the descent has to go
in negative direction of the gradient in order to minimize the energy.
In the limit i→ ∞ the series Ai+1 converges against the orthographic
matrix Aπ (i.e., A→ Aπ := A∞ = Aπ with A0 = A). In practice, the
descent is stopped either after an iteration number of i = s or if e falls
below a certain threshold. Thus, the energy minimization requires two
input parameters (the iteration number s and the step size µ) and it
requires the costs of O(n·s).
Fig. 3 schematically illustrates the idea of the reconditioning (top-left)
and the energy minimization (top-right) in order to reveal a configura-
tion of axes Aπ that guarantees an OSC-based on a non-orthographic
configuration A. Additionally, Fig. 3 (bottom) illustrates results of the
approach based on a 5D random non-orthographic configuration of
axes (left), for the reconditioning (middle) and the energy minimiza-
tion by gradient descent (right) in comparison. A detailed evaluation
of these techniques is given in Section 4.

3.2 Initial 2D Orthographic Star Coordinates
In most cases, the user requires an instant initial 2D OSC directly af-
ter a certain high-dimensional data set is loaded, and without using
the prior described detour via an NSC. Thus, in this section, two ap-
proaches are given in order to visually initiate such data as a 2D OSC
instantly.
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Fig. 3. Revealing 2D Orthographic Star Coordinates: (top-left) Illustra-
tion for the concept of reconditioning and (top-right) energy minimiza-
tion. (bottom-left) By applying both concepts to the same random axes
configuration, both (bottom-middle) the reconditioning and the (bottom-
right) energy minimization provide a better axes configuration. Please
note that energy minimization needs to be parameterized nonetheless.

3.2.1 Initial 2D OSC by Radial Standard Configuration
A modest approach to reveal an initial Aπ for an n-dimensional data
set is given by assigning the anchor points of the axis Aπ = (x,y)T

regularly along the periphery of a circle with radius r, given by

(xi,yi)
T = r·(sin(i·α),cos(i·α))T ; i = 0, . . . ,n−1.

By choosing α = 2π/n and r =
√

2/n, it can be guaranteed to obtain
an orthographic projection. Thus, the radial standard configuration
requires no input parameters, and additionally it runs quickly in O(n).
Please note that both r and α shrink with the dimension number n and
thus r = 0 and α = 0 in the limit n→ ∞. Figure 4 illustrates this for
standard configurations of the dimension numbers n = 3, . . . ,8. This
means the approach is sensitive for the number of dimensions n, but
it is not yet sensitive for semantic information within the data. This
drawback is addressed in the next section.
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Fig. 4. Radial Standard Configuration for 2D Orthographic Star Coordi-
nates: from top-left to right-bottom, the dimension number n increases
from 3 to 8. Radius r and angle α shrink with the dimension number n.

3.2.2 Initial 2D OSC by PCA Configuration
On the one hand, the previous approach supports the user by present-
ing an OSC, on the other hand, such an initial configuration is equal



if the number of dimensions is equal. Obviously, it would rather be
desired to have initial 2D star coordinates with both the orthographic
property and a semantic relation to the data. Fortunately, this can be
realized straightforwardly by applying a principal component analysis
(PCA) on the data.

The well-known PCA is – briefly described – an n× n matrix
E = (e1, e2, . . . , en) of the (column-wise) eigenvectors e j = e1×n(λ j)
to the spectrum (or sorted eigenvalues) λ j; j = 1, . . . ,n of the covari-
ance matrix C(MT ·M) from high-dimensional data m ∈M. For de-
tails, please see [15, 17, 7, 9]. The PCA defines a rotation from the n-
dimensional canonical basis of Euclidean data space onto an orthonor-
mal basis – given by the eigenvectors e j – so that variance and amount
of information, respectively is maximized in those directions which
are related to the largest spectrum values λ j . Thus, the vectors of the
basis are mutually orthogonal with unit length, i.e., they fulfill Eq. (3)
and therefore reveal an orthographic projection. Hence, an initial con-
figuration is given by

Aπ (i, j) := (ei , e j)
T . (6)

This PCA-based configuration requires pair i, j as initial dimension of
interest as input parameters by consuming costs of O(n·m) for m > n,
else O(n2). It is advisable to choose i, j; i 6= j so that they are related
to large eigenvalues in order to maximize the relevance of the initial
OSC w.r.t. the visualized information. However, the outcome is an
OSC that is both sensitive to the number of dimensions as well as to
semantic properties of the data. This gives a better starting point for a
visual exploration than the previous approach. For illustration, Fig. 5
provides PCA configurations for the Iris data set with n = 4 dimen-
sions and for the Wine data set with n = 13 dimensions. See Section 4
and [2] for data details. It can be seen that the initial orthographic
configuration is aligned to semantics of the data.
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Fig. 5. (left) Radial Standard Configuration and (middle-right) PCA con-
figuration to the largest eigenvalues for (top) the Iris data set with n = 4
dimensions and (bottom) the Wine data set with n = 13 dimensions.
Note that class information are not supported. Each record is individu-
ally colorized to enable a record-based comparison. It can be seen that
solely the PCA configuration is sensitive to semantics of the data.

3.3 Interaction with 2D Orthographic Star Coordinates

Until here, approaches to generate 2D OSCs of n-dimensional data, ei-
ther from an NOC or directly from the data, have been defined. They
are the initial step for a visual exploration. The next step is to define
convenient 2D OSC interaction approaches w.r.t. the coordinate axes.
Assuming that an orthographic projection Aπ = (p1 p2 . . . pn) is al-
ready available: by interactively moving an axis p1 to its new position
pb

1 = p1 + s1, the remaining axes pi, i = 2, . . . ,n need to be automati-
cally shifted – with shift vectors si – to a new position pb

i , i = 2, . . . ,n
that guarantees to preserve an orthographic projection. The resulting
orthographic projection, after the interaction is done, is symbolized by

Aπ
b = (pb

1 pb
2 . . . pb

n). Consequently, orthography-preserving interac-
tion is given by transforming the axis configuration Aπ to Aπ

b and it
equates to the task of carefully choosing shift vectors si, i = 2, . . . ,n.
We restrict ourselves to discuss interactions only for the axis p1. Fig. 6
illustrates this as well as the subsequently used mathematically nota-
tions with the aid of the example for the case n = 5. Different in-
teraction axes can be simply utilized by adopting the used indexation
within this section as needed. The issue ends up in solving a non-linear
optimization for the remaining axis configuration.
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Fig. 6. Orthography-preserving interaction with the axes of Orthographic
Star Coordinates: The initial axes configurations before the interaction
are given in red and are still described with the symbol Aπ . Interac-
tion means to move the endpoint of axis p1 ∈ Aπ to its new position pb

1,
described by the shift vector s1. Then, the remaining axes pi, i = 2, . . . ,n
have to be automatically shifted with shift vectors si in such a way that an
orthographic projection is still guaranteed. This shifted axes – named as
pb

i , i = 2, . . . ,n – form the axes configuration after interaction, illustrated
in blue and with the aid of symbol Aπ

b .

3.3.1 Analytical Orthography-Preserving Axis Interaction
We assume that the user interactively moves the axis p1 to its new po-
sition pb

1 with the aid of a shift vector s1, as illustrated in Fig. 6. The
positions of remaining axes pi, i = 2, . . . ,n need to be adjusted to pre-
serve the orthographic projection, which is a non-linear optimization
issue, as mentioned above. However, as illustrated in the Appendix,
this non-linear issue can be transformed (for each interaction step) into
a certain linear system. Solving this system for a certain configuration
of axis and shifts results in the new axis positions. Thus, for each in-
teraction step no input parameters are required, but there are costs be-
tween O(n2) and O(n3) (depending on the decomposition approach)
due to a QR decomposition of the linear system, required for each
interaction step.

3.3.2 On the Fly Orthography-Preserving Axis Interaction
A small shift s1 of an OSC Aπ yields an NSC A. Thus, by adjusting the
techniques of Section 3.1, further strategies can be derived to conduct
an orthography-preserving interaction. First, the remaining and yet
unknown axes pb

i = (xb
i yb

i )
T can be revealed with the proposed itera-

tive energy minimization approach, by a slight modification of it: (i)
the approach is initialized with A0 = (pb

1 p2 . . .pn), and (ii) the partial
derivatives (cf. Eq. (5)) for exb

1
and eyb

1
are set to zero: exb

1
= 0,eyb

1
= 0.

Then, the energy minimization yields the orthographic projection Aπ
b .

This energy minimization still requires the same input parameters and
has the same costs. Please note that for a small variation of Aπ by
s1 the orthographic energy only marginally increases. Thus, it can be
expected that already four or five steps of the descent converges in
a good result, i.e., this approach is rather quick. The second pos-
sibility to reveal the unknown axes is to apply a reconditioning to
A0 = (pb

1 p2 . . .pn). Please note that reconditioning shares all required
shifts – more or less uniformly – over all available axis components,
in order to reveal an OSC. Thus, also the interactive placed axis pb

1



will be mapped onto a new axis pb∗
1 by the reconditioning. The error

d for this is given by the Euclidean norm d = ||pb∗
1 −pb

1||
2. Since the

orthographic energy only marginally increases during the interaction,
it can be expected that d is generally negligible. For this approach, no
parameters are required, and the linear costs of n offers the fastest of
the mentioned approaches.

Fig. 7 presents an n = 5D example for both “on the fly”
orthography-preserving approaches in order to interact with an OSC.
In conclusion, both approaches are faster than the analytical approach,
but need to be parameterized or might produce a small error w.r.t. the
goal axis pb

1.
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Fig. 7. On the fly orthography-preserving interaction: (top) Energy Mini-
mization for interaction. The initial Orthographic Star Coordinates on the
left are used for interacting with axis p1, illustrated by the black arrow.
In the middle, the five intermediate steps of the axes during the descent
with step size µ = 0.5 can be seen. On the left, the new orthographic-
preserving axis configuration can be seen after the interaction. Only
a small error occurred during this approach given by energy e = 0.0003.
(bottom) Reconditioning for interaction. The initial Orthographic Star Co-
ordinates on the left are used for interacting with axis p1, illustrated by
the black arrow. In the middle, the shift for all further axes can be seen
during the reconditioning. On the left, the new orthography-preserving
axis configuration can be seen after the interaction. No error occurred
during this approach given by energy e = 0, but a small offset d = 0.04
between the desired axis position pb

1 and its real final position pb∗
1 is the

cost for this energy optimum.

3.4 Conditional Interaction with 2D Orthographic Star Co-
ordinates

In certain situations, it might be desired to satisfy condi-
tions/restrictions for adjusting the axes pi, i > 1, while an interaction is
conducted. In other words: it might be useful to restrict the degrees of
freedom for the axes. Fig. 8 illustrates the three restrictions of interest:

1. Fixed: Forbid any movement, i.e., pi = pb
i .

2. Radial Movement: Allow movement solely tangential to the pe-
riphery of pi, i.e., ||pi||= ||pb

i ||.

3. Directional Movement: Allow movement solely in the direction
of pi, i.e., pi = c·pb

i .

We assume that each axis pi; i> 1 is assigned with at most one of these
restrictions, which means the conditions are mutually disjunct. To re-
alize the conditions, the above-mentioned “on the fly” orthography-
preserving approaches will be adopted.

First, the energy minimization can be adopted: For each fixed axis
pi, the related partial derivative of Eq. (5) is set to zero: exb

i
= 0,eyb

i
=
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Fig. 8. Conditional orthography-preserving interaction with the axes of
Orthographic Star Coordinates: To further improve the interaction op-
tions, the degree of freedom of the axes can be restricted by certain
conditions w.r.t. their allowed movement. Conditions that make sense
are: Fixed - the axis is fixed and not allowed to move (red), Radial Move-
ment - the axis is allowed to move only along the periphery (yellow),
Directional Movement - the axis is allowed to move along its orientation
(light blue), No Condition - the axis is allowed to move freely (green).

0. In order to include both the radial movement and the directional
movement restriction, two further energy terms are added to the energy
of Eq. (4): the radial movement energy term with

eradial =
(
∑

#radial
i=1 (||pb

i ||− ||pi||)2
)2

,

and the directional movement term with

edir =

(
∑

#dir
j=1(

pb
j ·p j

||pb
j ||·||p j ||

−1)2
)2

.

Since the restrictions and the orthography property can be mutually
conflicting, a weighting parameter g∈ {0,1} steers the influence of the
properties, which yield the adopted energy function ec for the gradient
descent w.r.t Sec. 3.1.2 with:

ec = (1−g)·e+g·
(
eradial + edir

)
.

Now, the approach requires three parameters, namely one more with
g, but still runs with costs of O(n·s)

Second, the reconditioning technique can be transformed into an-
other iterative gradient descent approach, for which the conditions
are held, while simultaneously an iterative and ongoing recondition-
ing is running: Let Ωr be a reconditioning operation applied to matrix
A: Aπ = Ωr(A). As a reminder, please be aware that Ωr reveals an
OSC Aπ by reconstructing required properties within this plane that
is spanned by its components x and y. Further, let Φ be an operation
that replaces column vectors p∗i of matrix A∗ based on column vec-
tors pi of of matrix A that are assigned with a condition as follows:
Φ(A∗,A) :=

(pi is fixed)↔ (p∗i = pi)

(pi with radial movement)↔
(

p∗i =
p∗i ·||pi||
||p∗i ||

)
(pi with directional movement)↔

(
p∗i = pi· <p∗i ·pi>

<p∗i ·p∗i >

)
.

A simple scalar measure that describes the difference between an ar-
bitrary axis configuration A∗ and an axis configuration Φ(A∗,A) with
realized conditions is given by the (component-wise) difference be-
tween A∗ and Φ(A∗,A). This measure equates to the Frobenius norm
f = ||Φ(A∗,A)−A∗||F . By choosing A0 =Ωr(A), the successor Ai+1
that minimizes f and that is orthography-preserving is given by

Ai+1→Ωr(Φ(Ai,A)).



Please note that this series Ai+1 equates to an nD rotation of the hy-
perplane that is spanned by xi+1 and yi+1 in this direction where f is
minimized. The series Ai+1 preserves the orthographic property for
any i ∈ N, and it converges in the limit i→ ∞ against this nD plane
(w.r.t. xi+1 and yi+1) that minimizes the distance to the conditions in
least-square sense. Therefore, three advantages in comparison to en-
ergy minimization follow: (i) the orthography property is preserved
in all circumstances, (ii) the conditions are realized until they are in
conflict with the orthography property, and (iii) solely one parameter
is required (in contrast to three parameters µ,g, and s): the iteration is
stopped after an iteration number of i = s. Thus, the interaction with
conditions requires costs of O(n·s) for this adjusted reconditioning
technique. Figure 9 illustrates the mentioned concepts for a condi-
tional interaction with OCSs.
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Fig. 9. On the fly conditional orthography-preserving interaction for case
n = 5: The initial axes configuration – before the interaction – equates
to the Radial Standard Configuration and is therefore not shown here.
For each example, the axis pb

1 is slowly moved to the axis pb
5, along the

pathway emphasized by the black arrow. Note that thus the axis pb
1 is

finally hidden and covered by the axis pb
5. All sub-images show the fi-

nal results, after the interaction, based on different conditions that are
applied to the axis. (top) Results for the energy minimization approach:
(a) The axis pb

5 has a fixed condition. During the interaction this axis did
not move. (b) The axis pb

5 still has a fixed condition. In addition, the axis
pb

2 has a radial movement condition, i.e., it is only allowed to move along
the yellow periphery. It can be seen that this axis does not leave this
periphery during interaction. (c) The axis pb

5 still has a fixed condition.
In addition, the axis pb

2 has a directional movement condition, i.e., it is
only allowed to move along the light-blue line. It can be seen that this
axis lies almost on that line after interaction. A small error occurred due
to the large step size of µ = 0.1. However, in comparison to (a-b) the
direction of this axis is preserved in (c) best by far. (bottom) Results for
the reconditioning approach: the conditions of the axis and the interac-
tion results from (d-f) equate to the case for energy minimization (a-c).
For the reconditioning approach it can be seen that the orthography-
preserving works better. The cost for that is that the conditions of the
axis cannot be preserved perfectly in any cases, e.g., in (f).

3.5 Morphing between Orthographic Star Coordinates

Yet, initialization techniques as well as interaction techniques (uncon-
ditioned and conditioned) have already been defined. Now, we discuss
orthography-preserving morphing approaches between two different
OSCs Aπ

start and Aπ
end of same dimensionality. Fig. 10(a) shows the

space of possible axis configurations. It can be seen that orthographic
projections as Aπ

start and Aπ
end are connected with each other via a

set of orthography-preserving axis configurations, e.g., along a certain
path within this space. The trivial approach for a morphing is given by

a linear blending over time t ∈ [0,1] with

A(t) = (1− t)·Aπ
start + t·Aπ

end ,

but it cannot be guaranteed that the intermediate steps A(t) are ortho-
graphic, as seen in Fig. 10(a). Thus, at each time step t of the blending,
either an additional energy minimization Ωe or a reconditioning Ωr is
required to be applied to A(t):

Aπ (t) = ρ
(
(1− t)·Aπ

start + t·Aπ
end
)
, (7)

with ρ ∈{Ωr,Ωe}; which is denoted as Blending Energy Minimization
or Blending Reconditioning. As Fig. 10(b) illustrates, this treatment is
orthography-preserving, but it might lead to a non-uniform sampling
along the orthographic projections (orange path) that connects Aπ

start
with Aπ

end . By adjusting Eq. (7), this drawback can be improved by
introducing a step-wise approach: let td = 1, . . . ,k be discrete time
steps and k the total number of time step samples in order to reach Aπ

end
starting from Aπ

start . Then, the series Aπ
td+1

reveals a better sampling,
illustrated in Fig. 10(c):

Aπ
td+1
→ ρ

(
(1− td

k )·A
π
td +( td

k )·A
π
end
)
,

with Aπ
0 = Astart and td ∈N≤ k. Since the distance to an orthographic

projection, described by energy e, is lower for each intermediate step
Aπ

td in comparison to the previous approach, the required iteration
number s for energy minimization in order to reach an orthographic
projection is lower than before, i.e., the approach is faster than before.

Fig. 10. Schematic Illustration for morphing between two orthographic
axis configurations Aπ

start and Aπ
end : The space of all possible axis con-

figurations is given by x and y. Aπ
start and Aπ

end are two orthographic
representatives in that space, and they are connected with each other
via an orange path. Only that path consists of further orthographic
configurations, i.e., e = 0, and it should be ideally run through during
the morphing from Aπ

start to Aπ
end . (a) A simple linear blending between

Aπ
start and Aπ

end delivers the intermediate axis configurations on the black
line. These intermediate axes equate to non-orthographic projections
in general. (b) By applying a reconditioning/energy minimization during
the simple linear blending, the orthographic property is preserved, i.e.,
the intermediate steps lie on the orange path. However, non-uniform
distributions of samples on the orange path occur. (c) The step-wise
approach improves the distribution of intermediate steps.

Fig. 11 illustrates examples for all introduced morphing approaches.
The maximum orthographic energy is maximal for a simple blending,
smaller for an energy minimization approach (with µ = 0.1,s = 5),
and smallest for the reconditioning approach.



Fig. 11. Examples for the morphing approaches: (top-left) Initial con-
figuration for the orthographic axis configurations Aπ

start (red) and Aπ
end

(blue). (top-middle to bottom-right) Morphing approaches in compari-
son: the intermediate axes are illustrated overlaid for k = 70 steps.

3.6 Data Tours
In order to support the exploration of large nD data, our OSC morph-
ing approaches allow to define several data tour strategies. The main
idea is to sample certain axis configurations and to apply a morphing
between each sample pair in order to reveal a smooth tour. For this,
we assume a method Morphing(Astart ,Aend ,k), which applies a mor-
phing between the start projection Astart and the end projection Aend
in k steps w.r.t. any above introduced morphing approach.

3.6.1 Scatterplot Tour
A bivariate orthographic version of star coordinates projection is a
scatterplot. A scatterplot is a bivariate visualization technique that vi-
sualizes two dimensions of the nD data via a 2× n matrix Ai, j; i 6= j
and all of its columns by column permutations, given by a zero matrix,
except for index i and j; there it applies pi =(1, 0)T and p j =(0, 1)T ,
e.g., A1,2 and A4,3 are given by:

A1,2 =

(
1 0 0 0 0 . . .
0 1 0 0 0 . . .

)
, A4,3 =

(
0 0 0 1 0 . . .
0 0 1 0 0 . . .

)
.

By avoiding repetitions of configurations, there are n(n−1)
2 permuta-

tions and different scatterplots available. The orthography-preserving
tour that visits all scatterplots of an nD data is given by Alg. 1.

Algorithm 1 Scatterplot Tour(A,k)
Astart = A
for i=1 to n do

for j=i+1 to n do
Aend = Ai, j
Morphing(Astart ,Aend ,k)
Astart = Ai, j

end for
end for

3.6.2 PCA Tour
By following this scheme, an orthographic-preserving PCA-based tour
can be defined. Sec. 3.2.2 already introduced the PCA matrix E with
its column vectors ei; i = 1, . . . ,n. The PCA tour that completely vis-
its the PCA basis vector configurations, sorted by size of the related
eigenvalues, is given by Alg. 2.

Algorithm 2 PCA Tour(A,k)
Astart = A
for j=2 to n do

for i=1 to j do
Aend = (ei e j)

T

Morphing(Astart ,Aend ,k)
Astart = (ei e j)

T

end for
end for

Also for this tour, there are n(n−1)
2 configurations available. The ad-

vantage of the PCA tour (in comparison to the scatterplot tour) is that
multivariate relations can be visually explored and semantics of the
data are intrinsically emphasized, i.e., they cannot be missed.

3.6.3 Grand Tour

An orthography-preserving grand tour is an obvious extension of Asi-
mov’s grand tour [1]. Assuming a sampling in the space of ortho-
graphic configurations, the orthographic tour is given by connecting
the samples with morphings. Orthographic grand tours share the same
advantages and limitations of normal grand tours, namely the expo-
nential complexity with n. Note that both PCA and orthographic grand
tour reveal multivariate relations, but the grand tour is independent of
the data. Clearly, the orthographic grand tour as well as the original
grand tour [1] are only appropriate for low-dimensional data.

4 APPLICATIONS AND EVALUATION

As proof of concept, our approaches are subsequently evaluated.
Please zoom into the figures on demand in order to recognize rele-
vant and important details and information as well. For the evalua-
tion, we sample nD spheres to generate synthetic data. With them, our
concepts are illustrated w.r.t. distortion and orthography properties.
Afterwards, several real data are applied to our techniques in order to
clarify the advantages and to complete this discussion.

A point m = (m1, m2, . . . , mn)
T that lies on the periphery of an

nD sphere with radius r is given by

m1 = r·cos(φ1),mn = r·
(

∏
n−1
j=1 sin(φ j)

)
,

mi = r·
(

∏
i−1
j=1 sin(φ j)

)
·cos(φ j),

with i = 2, . . . ,n− 1. A dense random sampling of angles φ j reveals
our synthetic data.

In Fig. 12, our interaction approaches are evaluated w.r.t. a 5D
sphere with 1500 samples and a radius of 0.2. From top to bottom, the
following information are illustrated: Initialization and free movement
interaction of an axis for traditional star coordinates and for RadViz.
Distortions can be seen. Next: the evaluation of our analytical inter-
action approach. The same interaction is now implemented distortion-
free (middle-right). However, a radial movement of the axis (black ar-
row, middle-left) gives the orthographic energy diagram on the right:
the orthographic energy increases with growing interaction time (but
slower than, e.g., for RadViz). This is a numerical effect of instabil-
ity caused by enduringly solving a linear system (cf. Section 3.3.1),
i.e., small errors add up over time. Afterwards, the evaluation of the
two remaining interaction techniques is given: reconditioning and en-
ergy minimization (µ = 0.1,s = 5); furthermore, their related ortho-
graphic energy diagrams can be seen. Both techniques preserve the
orthographic property well, but the reconditioning works better with a
magnitude of 25·10−31 in comparison to 12·10−4. In contrast, recon-
ditioning gives an average drift of d = 4·10−5 (in our experiments)
w.r.t. the goal axis pb

1, which limited its practicability. Thus, en-
ergy minimization should be preferred if such a drift is not acceptable.
Below, our conditional orthography-preserving interaction approaches
are investigated: the orthographic energy diagrams (right) show that
the reconditioning (s = 8) preserves the orthography property much



better than the energy minimization (µ = 0.1,s = 5,g = 0.75). Espe-
cially the use of fix conditions strongly influences this. That result has
an easy explanation: the reconditioning enforces to preserve the or-
thography property. In comparison, the energy minimization does not,
but it “blends” between the conditions and the orthographic property
(steered by parameter g). In our experiments, the reconditioning min-
imizes – on average – the condition goal function f for each turn from
fstart = 0.0015 to a minimum fmin = 1.17·10−4 (cf. Section 3.4),
which illustrates that the reconditioning should use in practice w.r.t.
conditional interactions. Our interaction tools are also suitable for a
larger number of dimensions, as illustrated in Fig. 13 (top, left to right)
for n = 50.
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Fig. 12. Evaluations as well as comparisons for orthographic-preserving
and classic interaction techniques, both illustrated for the case of n = 5.

Fig. 13 (bottom) and Fig. 14 illustrate the non-linearity of the
orthography-preserving morphing concepts. In Fig. 13 (bottom) two
scatterplots (left, middle-left) are given for the case n = 5. Fig. 13
(bottom; middle-right, right) shows the morphing – in a way that each
step is plotted onto the previous one – for a simple blending and an
orthography-preserved blending: It can be seen that the second ap-
proach preserves the orthography property for all intermediate steps,
the simple blending does not. Fig. 14 also illustrates similar morph-
ings for n = 10,20, and 30. It can be figured out that (i) a morphing is
a non-linear operation and (ii) our approach implements this operation
appropriately.

Fig. 15 shows a series of comparisons between RadViz, traditional
star coordinates, and our orthographic star coordinates in several sit-
uations w.r.t. our interaction and morphing concepts. Note that all
images are based on the same data configuration, namely three nD
spheres with radius 0.2 and 1500 samples in each case, simulating
in total 4500 data points. It can be seen that RadViz and traditional
star coordinates neither preserve the size nor the shape, but ortho-
graphic star coordinates do. Fig. 16 shows a case study for the visual
data exploration with orthographic star coordinates, for Iris data (4 di-
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Fig. 13. Interaction and morphing: (top) orthographic interaction for
n = 50, (down) orthographic morphing compared with simple blending.
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Fig. 14. Morphing: mutually compared for n= 10,20, and 30 dimensions.

mensions, 150 records), Wine data (14 dimensions, 178 records), and
Parkinson data (24 dimensions, 195 records). See [2] for details of
the data. Please note that class information are not considered. Thus,
each record has an individual color. For this figure, screen shots were
captured while interacting with OSCs: from left to right and from top
to bottom, the interaction times grows. It can be seen that structures
of the data turn out and a kind of rotation is observable. This is caused
by the fact that an interaction with an OSC is exactly that: a rotation
of a high-dimensional hyperplane.
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Fig. 15. Comparison of the visualization techniques RadViz, traditional
star coordinates, and orthographic star coordinates for n = 5.
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Fig. 16. Studies of visual data exploration by orthographic star coordi-
nates for (top) Iris data set, (middle) Wine data set, and (down) Parkin-
son data set.

5 DISCUSSION

Low-dimensional projections are an appropriate approach to analyze
high-dimensional data, but there are important differences to consider:
Both projective and affine projections cause distorted visualizations,
as known from, e.g., RadViz (projective) and classical star coordinates
(affine). By means of those distortions, local data properties might be
focused as kind of a visual data lens, i.e., a certain sub-space of the
data space is emphasized by this kind of data space lens. This allows
a detailed local data space investigation and moreover an efficient use
of the available screen space. On the other hand, these distortions
might lead to wrong conclusions in terms of global patterns of the data
and data space, respectively, since distortions visually hide, distort,

and interfere global patterns. In other words, non-orthographic pro-
jections do not allow a direct interpretation of the shape of nD spheres
or patterns in general. Therefore, in order to facilitate a reliable in-
vestigation of global patterns, we introduced orthography-preserving
multivariate projection as orthographic star coordinates. These ortho-
graphic projections complement projective and affine projections and
they provide a distortion-free visual investigation of global patterns
in the data space. The interplay of distortion-free and distorted low-
dimensional multivariate projections facilitates a complete and com-
plementary visual search of high-dimensional data in terms of local
and global patterns within an iterative visual search process.

6 CONCLUSION
In this work, we propose an orthographic version of the popular star
coordinates, as well as related interaction and morphing techniques.
We extend our concepts to data tour approaches in order to reasonably
visually reveal interesting patterns in the data. Our results show that
orthographic star coordinates are convenient to avoid distortions and
therefore to further improve the visual data exploration. Future work
encompasses the discussion of 3D orthographic star coordinates.

APPENDIX

This appendix illustrates a scheme to reveal a linear system for the
analytical orthography-preserving axis interaction w.r.t. certain di-
mension numbers n. See Fig. 6, the new axes are given by pb

i =

pi + si; i = 1, . . . ,n with pi = (xi yi)
T ,pb

i = (xb
i yb

i )
T , si = (ui vi)

T ,
u= (u1, u2, . . . , un), and v= (v1, v2, . . . , vn). s1 = (u1 v1)

T is given
by the user, the remaining vectors si, i = 2, . . . ,n can be calculated in
order to preserve the orthographic property. For this, we derive three
energy terms from Eq. (3-4) at first:

eu(α) = ||x+α·u||2−1, ev(α) = ||y+α·v||2−1, (8)
euv(α) =< x+α·u,y+α·v > .

For an OSC, energy e = 0, i.e., the partial derivatives from (8) turn
to zero: ∂eu(0)/∂α = ∂ev(0)/∂α = ∂euv(0)/∂α = 0. With this, a
closed solution can be calculated for the unknowns u2,u3,v2 as:u2

u3
v2

= U·

 b1 =−2x1u1 +∑
n
i=4−2xiui

b2 =−2y1v1 +∑
n
i=3−2yivi

b3 =−u1y1− v1x1− v3x3 +∑
n
i=4−uiyi− vixi

 , with

U =


a11 =

0.5y3
x2y3−x3y2

a12 =
0.5x3x2

y2(x2y3−x3y2)
a13 =

−x3
x2y3−x3y2

a21 =
−0.5y2

x2y3−x3y2
a22 =

−0.5x2
2

y2(x2y3−x3y2)
a23 =

x2
x2y3−x3y2

0 a32 =
1

2y2
0

 .

In addition, the squared Euclidean distance h for u and v is given by

h =
n

∑
i=2

u2
i + v2

i =
[
u2

2 +u2
3 + v2

2

]
+

[
n

∑
i=4

u2
i +

n

∑
i=3

v2
i

]
By considering the known variables u2,u3 and v2, this yields:

h =

[∣∣∣∣∣∣U·(b1 b2 b2)
T
∣∣∣∣∣∣2]+[ n

∑
i=4

u2
i +

n

∑
i=3

v2
i

]
We urge to minimize h to get the remaining unknowns, i.e., the partial
derivatives ∂h

∂ui
= ∂h

∂vi
= 0 vanish. By use of a formula manipulation

system like Maple, a closed form of the partial derivatives follows:

∂h
∂ui

= 2(u2(−2a11xi−a13yi)+u3(−2a21xi−a23yi)+ui),

∂h
∂vi

= 2(u2(−2a12yi−a13xi)+u3(−2a22yi−a23xi)+vi−4v2a2
32yi).

The unknowns and knowns are now linearly related, i.e., solving the
linear system ( ∂h

∂ui

∂h
∂vi

)T = 0 yields shift vectors in u and v that guar-
antee an orthographic projection after interaction with s1 = (u1 v1)

T .
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