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Figure 1: Applications of our interactive, global line selection algorithm. Our bounded linear optimization for the opacities reveals user-
defined important features, e.g., vortices in rotorcraft flow data, convection cells in heating processes (Rayleigh-Bénard cells), the vortex core
of a tornado and field lines of decaying magnetic knots (from left to right).

Abstract

For the visualization of dense line fields, the careful selection of
lines to be rendered is a vital aspect. In this paper, we present a
global line selection approach that is based on an optimization pro-
cess. Starting with an initial set of lines that covers the domain,
all lines are rendered with a varying opacity, which is subject to the
minimization of a bounded-variable least-squares problem. The op-
timization strives to keep a balance between information presenta-
tion and occlusion avoidance. This way, we obtain view-dependent
opacities of the line segments, allowing a real-time free navigation
while minimizing the danger of missing important structures in the
visualization. We compare our technique with existing local and
greedy approaches and apply it to data sets in flow visualization,
medical imaging, physics, and computer graphics.
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1 Introduction

Line fields consist of families of 3D curves that cover (part of) a 3D
domain densely. They have many applications in scientific visual-
ization (e.g., streamlines and pathlines of velocity vector fields),
medical imaging (e.g., tensor lines or fiber bundles of DT-MRI
data), physics (e.g., magnetic field lines) and computer graphics
(e.g., speed lines to depict motion). With the ongoing development
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of graphics hardware, anti-aliased, high-quality rendering of mas-
sive sets of line primitives has become generally available. How-
ever, the main challenge in rendering line fields is line selection:
from the potentially infinite set of possible lines, a set of represen-
tatives has to be selected for rendering, and this selection should
visually convey the main features of the data. On the one hand,
displaying too many lines results in cluttered renderings where im-
portant features may be hidden. On the other hand, displaying too
few or the wrong lines may also lead to missing features due to
undersampling of the interesting regions.

Line selection for line fields was intensively studied, mainly in the
field of flow visualization. So far, all existing methods use a local or
greedy approach: a suitable line is found either by locally searching
for a good seeding point for a line integration, by a greedy algorithm
of repeatedly inserting new lines, or by computing local importance
measures for a finite set of pre-selected lines. Furthermore, none of
the existing approaches is readily applicable to a free navigation
in a scene: existing methods depict lines to generate illustrations
for a distant viewpoint, and they do not handle the massive occlu-
sion that can be introduced by even a single line very close to the
camera. (Lines are usually expanded to ribbons or tubes to pro-
vide depth cues, thus they typically cover more screen space when
moving close to them).

This paper is based on the insight that line selection should be for-
mulated as a global optimization problem: if a line is detected to
be important, but at the same time occludes more important struc-
tures, it should not be rendered. On the other hand, if a line is
of only moderate importance and does not occlude more important
structures, it can (and should) safely be rendered. This means that
the decision on selecting a particular line is a compromise between
having a maximal amount of conveyed information and having a
minimal amount of occlusion of other features. Similar to existing
methods, our approach starts out with a finite set of initial lines that
cover a 3D domain densely. Instead of selecting a subset of these
lines for rendering, we render all lines but assign varying opaci-
ties to the line segments. The opacities of segments are repeatedly
computed as the minimizers of a quadratic error function, which is
possible at interactive rates. This way, we resolve occlusions by
locally fading out line segments and attain frame coherence. With
this, we introduce the first method that allows for a free, interactive
navigation in a scene, while achieving a view-dependent, globally
optimal selection of lines from a precomputed set of candidates. In
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addition, the user can optionally define an importance measure, i.e.,
incorporate available domain knowledge to emphasize features.

2 Related Work

Early work on line selection was done for streamlines in 2D vec-
tor fields [Turk and Banks 1996; Jobard and Lefer 1997; Verma
et al. 2000; Jobard and Lefer 2001; Mebarki et al. 2005; Liu et al.
2006; Li et al. 2008]. The focus of these approaches was mainly
on finding seeds to cover the domain densely with streamlines.
Extensions to 3D have been developed by guiding the seeding by
density-based [Mattausch et al. 2003], feature-based [ Ye et al. 2005;
Yu et al. 2012], or similarity-based measures [Chen et al. 2007;
McLoughlin et al. 2012].

In 3D, however, the maximization of perceivable information is not
only a matter of evenly sampling the domain, but also of avoid-
ing occlusions: it becomes a view-dependent problem. Li and
Shen [2007] applied the iterative 2D seeding strategy of Jobard and
Lefer [1997] to produce evenly-spaced streamlines by an image-
space approach. Thereby, the depth of the lines is acquired by re-
projection. Annen et al. [2008] proposed a seeding algorithm, in-
spired by non-photorealistic rendering techniques. Hereby, the ter-
mination of streamline integration depends on local measures, such
that selected lines have the most similar behavior to contours on
surfaces. Xu et al. [2010] used an information-theoretic approach
to measure the information conveyed by a given set of streamlines.
The disparity to the original field’s entropy guides the seeding of
streamlines to add details where needed. Lines are faded out to re-
duce occlusion by mapping the scalar entropy field to transparency.

Selection-based approaches do not search for seed points for line in-
tegration but instead select lines from a precomputed set. This does
not only speed up the search, it also makes frame coherence (i.e.,
avoidance of popping artifacts) easier to achieve and is therefore
a good choice when aiming at interactive navigation. Marchesin
et al. [2010] joined lines from a precomputed set with additionally
generated lines, depending on the on-screen footprint of the already
chosen lines (accumulated in a so-called occupancy buffer), as well
as local properties per line. Such local properties again originate
in information theory and are the linear entropy [Furuya and Itoh
2008] (i.e., variation of velocity along a line) and the angular en-
tropy [Marchesin et al. 2010] (i.e., variation of a line’s direction).
To this end, these approaches are neither interactive nor frame co-
herent. Another local, but view-dependent measure was introduced
by Glinther et al. [2011], who mapped the number of visible pix-
els to transparency to fade out lines with only minor contribution.
Since this approach tends to favor lines closer to the camera it
cannot remove lines covering up the viewport. Ma et al. [2013]

combined lines from a view-independent and view-dependent set
by considering coherence between local views and the last frame.
For filling the viewport they compute occupancy [Marchesin et al.
2010], thus do not account for the order of occlusions.

A problem related to line selection — and sometimes solved simulta-
neously with it —is viewpoint selection. Lee et al. [2011] steered the
selection of lines from a precomputed pool in a greedy algorithm
based on the maximum intensity projection (MIP) of a scalar en-
tropy field, called maximum entropy projection (MEP). They also
used the MEP to select the best viewpoint among 780 candidates
placed on a sphere surrounding the data set. Tao et al. [2013]
coupled the selection of streamlines and viewpoints by modeling
them as interrelated information channels [Wang and Shen 2011],
i.e., they selected a streamline set and a viewpoint simultaneously.
The viewpoint is constrained to be located on a sphere surrounding
the data set, and the streamline selection is invariant under camera
movement but is based on the evaluation of multiple views. Addi-
tionally, they generate a camera path on the sphere.

All existing approaches for 3D line selection are — to the best of our
knowledge — either local or greedy. “Local” means that a line is
selected based on certain importance measures without considering
its relation to other selected lines. “Greedy” means that a new line
is selected based on its relation to already selected lines, making
the process of line selection dependent on the order of line inser-
tion. Furthermore, the restriction of some techniques for having the
viewpoint outside of the domain is a limitation that makes view-
point selection approaches not an option for free scene navigation.

Table 1 compares features of the most relevant techniques for 3D
line selection and our new approach. We consider (in columns
left to right) the following features: view dependence (selected
lines change when changing the viewpoint), frame coherence (small
changes of the viewpoint lead to small changes in the shown lines
without popping artifacts of new lines; view-independent tech-
niques are trivially frame coherent), occlusion (occlusion informa-
tion is used for line selection), interactivity (line selection is ei-
ther precomputed or fast enough for interactive navigation, trivially
yes for view-independent), GPU-accelerated (availability of GPU-
accelerated implementation), transparency (semi-transparency used
for line rendering), and strategy (either local, greedy, or global).
The yellow boxes could not be uniquely classified: the image-based
approach of Li and Shen [2007] produces for a given view a line set
that does not intersect in image-space, thus there is no occlusion.
For more complex and larger data sets they propose to combine the
lines acquired from multiple views. In that case, they do not ad-
dress the arising occlusion. Albeit Li and Shen [2007] and Ma et
al. [2013] first validate lines from the previous frame, frame co-
herence is still an issue, as newly added lines introduce popping

[ Method | View-depend. [ Frame coher. | Occlusion | Interact. [ GPU-acc. | Transp. | Strategy |
[Chen et al. 2007] X v X v X X greedy
[Li and Shen 2007] v v v X n/a X greedy
[Annen et al. 2008] v v X v v X local
[Marchesin et al. 2010] v X v X v X greedy
[Xu et al. 2010] X v X v n/a v greedy
[Giinther et al. 2011] v v X v v v local
[Lee et al. 2011] v X v v v X greedy
[McLoughlin et al. 2012] X v v v n/a X greedy
[Yuetal. 2012] X v v v v X greedy
[Tao et al. 2013] X v X v v X greedy
[Ma et al. 2013] v v v v v X greedy
Our approach v v v 4 v v global

Table 1: Comparison of features of related methods and our approach.



artifacts. McLoughlin et al. [2012] and Yu et al. [2012] present hi-
erarchical streamline clustering algorithms in which the user steers
the degree of occlusion by interactively selecting a level-of-detail.

3 Problem Setting and Error Function

Our approach starts with a finite set of polylines, which cover the
domain densely. Instead of selecting particular polylines or poly-
line segments, all polylines of the initial set are rendered but with a
variable opacity that minimizes an error functional. Every polyline
is split into a number of segments, producing in total n polyline
segments. Figs. 2(a) and 2(b) illustrate this for two polylines with
n = 6. We compute the optimal opacity «; € [0, 1] for each seg-
ment 1 < 4 < n as solution to a bounded-variable least-squares
problem (Fig. 2(c)). For rendering, the opacities are interpolated
between adjacent segments to yield vertex opacities, see Fig. 2(d).

Each segment is equipped with a local importance g; € [0, 1],
which can be chosen depending on the application. (A discussion
of possible choices for g; follows in Section 5.1.) The higher g;
the more the segment should be emphasized. If no particular im-
portance is given, g; is set to 0.5 for all segments. In addition, the
following properties are computed for every pair (, j) of segments

e a;; encodes adjacency of segments: a;; = 1 if the segments
¢ and j are adjacent on the same polyline; otherwise a;; = 0.
The example in Figure 2(c) has a12 = a21 = a23 = az2 =
a45 = as4 = ase = a5 = 1 and all remaining a;; = 0,

e h;; € [0,1] describes how much segment j is occluded by
segment ¢ as seen from the particular viewpoint. Its conti-
nuity during camera movement induces frame coherence. In
Figure 2(c) we have hos > 0 and all remaining h;; = 0.

We find opacities «; as minimizers of the quadratic error function

E=p Y (ai—1)° )
i=1
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with bounded variables 0 < «; < 1. The four terms of E can be in-
terpreted as follows: (1) is a regularization to prevent almost empty
renderings, i.e., prevent all c; from being close to 0 by penalizing
a variation of o; from 1. (2) introduces a penalty if an important
segment j (i.e., g; is large) is occluded by an unimportant segment
i (i.e., 1 — g; is large). Then, h;; > 0 and in this case the opacity
of segment ¢ should be rather low, i.e., it should not occlude seg-
ment j. The parameter A steers the fall-off of g; from 1. (3) covers
the opposite case, i.e., an unimportant segment ¢ is occluded by an
important segment j. Similarly, the opacity of segment 7 is forced

(a) Given is a set of polylines. (b) Discretize polylines into n seg-

ments (here: n = 6).

)
\

to be small in order to have a “more empty” background behind
important segment j. (4) is a smoothness term that enforces a slow
change of the opacity along a line. Finally, the weights p, g, 7, s
balance the contribution of the terms. They can be restricted by a
normalization or global scale, e.g., we choose p = 1. Section 5.2
discusses the parameters in more detail.

4 Details and Implementation

The essence of our approach is to use transparency to locally fade
out line segments that cause occlusion. This requires a method for
correctly blending many transparent layers, see Maule et al. [2011]
for a survey of raster-based transparency techniques. We decided
to create on the GPU for each pixel a linked list of the rasterized
fragments [Yang et al. 2010], as this data structure serves two dif-
ferent purposes: blending of transparent layers and generation of
penalties h;; that measure occlusion caused by segment ¢ on j. For
the latter, fragment linked list elements store — in addition to color
and depth — a value that is used to identify the polyline segments.
Based on the segment index and the fragment depth, the order of
occlusions is taken into account.

4.1 |Initial Line Set

Firstly, we obtain the initial polyline set from the given line field in a
preprocess. For this, the only requirement is a dense covering of the
domain, i.e., for every point in the domain there is a line passing by
closely. For the examples on flow visualization and medical imag-
ing, we used a random distribution of seeding points for line inte-
gration. If random seeding does not yield a fair uniform distribution
of line geometry, sophisticated view-independent seeding strategies
may serve as input [Chen et al. 2007; Xu et al. 2010; McLoughlin
et al. 2012]. Secondly, we partition each polyline into a fixed num-
ber of k polyline segments. The total number of segments is n. The
value k trades the potential variation in opacity along each polyline
for the size of the system to solve. We observed that k can be rather
small because the computed opacities are blended smoothly along
polylines for rendering. We used k = 8 for all examples.

4.2 Fragment Linked List Construction and Rendering

All element data of the fragment linked lists resides in a global
memory pool that is shared by all pixels, and is managed by atomic
operations in the fragment shader. The element data to append is
obtained by rendering all lines with depth-dependent halos [Ev-
erts et al. 2009], i.e., we expand the lines in a geometry shader to
viewport-aligned triangle strips and alter the depth and color of the
boundary — halo — region. Other depth enhancing method are imag-
inable here as well, e.g. line ambient occlusion [Eichelbaum et al.
2013] or unsharp masking of the depth buffer [Luft et al. 2006].
We use an illuminated streamline shading (ISL) by Zockler et
al. [1996], combined with multi-sampling (16X coverage-sampling
anti-aliasing/CSAA, i.e., 4 samples per pixel). We run the pixel
shader only once per pixel (i.e., on pixel-frequency) to create only
one fragment in the linked list, and evaluate multiple samples ex-
plicitly to smooth the sharp edge between center and halo region.

_

e ——

(c) Compute per-segment opacity (d) Interpolate opacities between adja-
«; by energy minimization.

cent segments for final rendering.

Figure 2: lllustration of the general idea.
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Figure 3: The precomputed parameterization w provides lookup
up of nearest line segment centers and blending weights.

Every opacity value is associated with the center of the respective
polyline segment. The arc-length distance of an arbitrary point on
the line to closest left and right centers is used as weight for blend-
ing opacities, i.e., to define the transparency of a line’s fragment.
Blending weights and the indices of the closest opacity centers are
easy to obtain from the blending weight parameterization w, shown
in Figure 3, which is precomputed and added as a vertex attribute.
We evaluate index ¢ and opacity « for a weight w as

i <+ floor(w)
o < lerp(aq, iy, frac(w)) .

The transparent colored fragment is appended to the pixel’s frag-
ment linked list. We store the depth (quantized to 24 bit) and the
coverage bit vector (8 bit) together. Color and blending weight w
are stored as RGBA vector with 8 bit per component and as full
32-bit float, respectively. A second pass sorts the lists, which is re-
quired for computing h;; (see below). We remark that also render-
ing benefits from pre-sorting per pixel instead of sorting per sample.

4.3 Computation of h;;

To gain higher throughput, we use an otherwise unoccupied CPU
core for the assembly of the sparse matrix H. Thus, in order to
compute the values h;;, we stream the fragment linked lists asyn-
chronously to the CPU after sorting. We iterate all lists and sum up
the weights of the occluded fragments for all segments, see Alg. 1.

Input: fragment linked list per pixel
Output: h(i,j)
h(i,j) <~ 0;
foreach pixel p do
foreach fragment A in linked list of pixel p do
i < floor(A.w + 0.5) ;
foreach fragment B behind A do
j ¢ floor(B.w) ;
v < frac(B.w) ;
h(i,j) <+ h@j) + 1-v;
h(i,j+1) < h(i,j+1) + v ;
end
end

end
Algorithm 1: Penalty h;; for segment ¢ occluding j.

4.4 Minimization of the Error Function F

The minimization of the quadratic error function E refers to solving
a bounded-variable least-squares problem which can be formulated
in the normal equations as

L 1
minimize §XTQX + ¢Tx + const
subject to 0<x; <1.

with x = (au,...,n)”. The sparse, positive definite matrix Q
captures the error terms (1)-(4) together with the constant vector

¢ = (—=1,...,—1)T, which refers to the constant —1 in (1). The
operator QQ can be assembled as

Q=pI+q¢gWW'+r W'W+s5.D'D,
where I is the identity matrix. The matrix W is given as
W = (I-G)'HG,

such that WWT and WTW refer to (2) and (3), respectively.
Then, G is a diagonal matrix with g;, and H is sparse with
H;; = hs; (see above). The matrix D is the backward difference
operator that is applied to adjacent polyline segments in (4).

‘We use the reflective Newton method [Coleman and Li 1996] that
is implemented in MATLAB’s quadprog' function to solve the
system. Due to frame coherence of the solutions, we obtain a sig-
nificant speed-up by using the previous solution as an initial guess
for the next solution. We perform the setup of the system matrix
Q for the next time step in one CPU-thread, while another thread
is dedicated to solving the system for the current time step, i.e.,
we pipeline the computation. Once a solution is available, it is
streamed to the GPU to smoothly blend the current opacities to the
latest solution. We use this fading in toward a new solution to pre-
vent popping artifacts, as we do not get every frame a new solution.

5 Parameter Studies

5.1 Choosing g;

As the meaning of importance depends on the application and
goals of data exploration, we don’t prescribe a particular impor-
tance function. Instead, we provide a generic way to incorporate
any suitable importance measure, which is defined as g; per poly-
line segment 7. This enables the user to either explore the presence
of, or to communicate a specific feature in the data. For all ex-
amples we use either the polyline length (i.e., all segments of a line
have identical importance) or the segment curvature (i.e., integrated
curvature). These measures are generic and available for any appli-
cation. In addition, various methods exist that extract application-
independent line features, for instance linear entropy [Furuya and
Itoh 2008], angular entropy [Marchesin et al. 2010], scalar entropy
fields [Xu et al. 2010], or the number of pixels that a line covers on
the screen [Giinther et al. 2011]. Alternatively, importance may be
application-specific, e.g., distance to a tumor in medical imaging,
cluster sizes in fiber tracking, or uncertainty in data. With our ap-
proach, we can incorporate any sophisticated importance function.
Different choices for importance are shown for a synthetic tornado
data set in Fig. 5 (line length) and Fig. 1 (curvature), which brings
out the vortex core. (For both images we set ¢ = 1.2, A = 5.)

5.2 Optimization Parameters

The parameters p, g, r, s act as weights for the error terms, and A
emphasizes important lines. We set p = 1 and select g, r, s rela-
tively to this value. The parameter g weights occlusion and is prob-
ably most important: it scales the amount of opacity in the final
image. Setting ¢ = 0 keeps all lines opaque (if 7 is — as described
later — chosen relative to ¢q.) An increasing g gradually fades out oc-
cluding lines. Effectively, this is the main tool to resolve occlusions
introduced by lines in the foreground, as shown in Fig. 4(a): Here,
we placed a camera behind a helicopter in slow forward flight close
to the ground. The data is described in [Kutz et al. 2012]. The line

'We found that an equivalent formulation for MATLAB’s 1sqlin was
slower, and same for quadratic/conic solvers in MOSEK (see mosek . com).



field represents air flow, and the direct visualization of the original
data, shown in the top figure, suffers from vast occlusion. In the
bottom figure, we use curvature as importance to reveal the main
vortices: visible are not only the two vortices, released from the ro-
tor blades and transported back, but also the vortex on the ground in
front of the helicopter. The latter vortex is critical as it is the main
source of small dust particles that cause hazardous brown-out con-
ditions, which endanger ground personnel as well as passengers.

The parameter r has a more subtle effect: it accounts for fading
out unimportant lines in the background that are occluded by im-
portant lines in the foreground. This effect is demonstrated in the
flow around a short wall-mounted cylinder, simulated by [Frederich
et al. 2008] and shown in Figure 4(b). Behind the interesting region
there is an unimportant laminar layer that clutters the view forr = 0
(top). For » > 0 we obtain a much clearer visualization, as disturb-
ing unimportant lines in the background are faded out (bottom). It
is reasonable to select 7 < g, and our experiments show that setting
r relative to g, as r = 1—10 q is generally a good choice. We use this
setting in the remainder of the paper unless stated otherwise.

The remaining parameter s weights a smoothing term that penalizes
high variation of opacities along polylines. We always set s = 0.3.

Finally, the coefficient A controls the emphasis of important lines.
In Fig. 4(c), we demonstrate its utility in a hydrocyclone, a device to
separate particles in a liquid suspension. If not stated otherwise, we
set A = 1 neutral, i.e., no increased emphasis on important lines.

6 Results and Discussion

We compare [Marchesin et al. 2010; Giinther et al. 2011] and our
algorithm in Figure 5. The columns show the initial line set (left)
and the different methods. Data sets are arranged in the rows.

The first row shows magnetic field lines in the decay of magnetic
knots, as present in astrophysical objects. Here, the topological
reconnection of rings was studied by [Candelaresi and Brandenburg
2011], which temporarily form the shape of Borromean rings. The
objective of the visualization is to bring out the highly occluded,
symmetric rings, a task at which our technique performed best. We
use line lengths as importance with ¢ = 2, » = 0.02, and A\ = 3.

The second row analyzes experimental wind tunnel data by [Yu
et al. 2002] of a descending helicopter (viewed from below w/o the

helicopter body). Of interest are the vortices that detach from the
tips of the rotor blades: their impact on the rotor and on the noise
generation (by blades cutting the vortices) should be analyzed. Our
method produces clear views on the vortices. Here, curvature was
used as importance, with ¢ = 2, 7 = 0.04, and A = 2.5.

The tornado data set shown in the third row is described in sec-
tion 5.1. Since our approach is able to locally fade out segments, it
can cover the entire viewport with lines (by using all lines) and at
the same time reveal features like the tornado’s vortex core (in con-
trast to [Marchesin et al. 2010]). Furthermore, this test case shows
the advantage of being able to fade out line segments locally over
using a global opacity value per line as in [Giinther et al. 2011].

The fourth row shows medical data, i.e., blood flow through an
aneurysm, simulated at the Institute of Fluid Dynamics and Ther-
modynamics, based on vessel geometry acquired at the University
Hospital, both in Magdeburg. In the input data, the aneurysm is
entirely occluded by flow through the blood vessel. An overview,
taken from a distant viewpoint, is shown in Fig. 6(b). Not only the
aneurysm but also convection due to wall reflection is made visible
by our approach (curvature as importance and p = 0.3, A = 3.5).

The fifth row shows a Rayleigh-Bénard convection, i.e., the forming
of separate convection cells by fluids heated from below (simulated
using the free software NaSt3DGP). The center left image in Fig. 1
depicts all four cells. To demonstrate the disadvantage of greedy
algorithms, we placed the camera inside a convection cell. Both
methods, [Marchesin et al. 2010] and [Giinther et al. 2011], se-
lect highly occluding lines, while our approach reveals the occluded
cells (curvature as importance and ¢ = 0.3, r = 0.06, A = 3.5).

Figure 6(a) shows visualizations of diffusion tensor data, i.e., trac-
tography in medical imaging, which allows to infer the white-
matter connectivity of the brain to diagnose vascular strokes or can-
cer. The DT-MRI data was acquired at the Central Hospital of Bre-
men. In Fig. 7, we visualize trajectories of three falling dice to
depict motion. We show speed lines for every corner to demon-
strate that our technique is also suited for automatic fading of lines
in illustrative renderings. This scene is courtesy of Maik Schulze.

6.1 Performance

We measured the performance for an Intel Core 17-2600K CPU with
3.4 GHz, 16 GB RAM and a Nvidia GeForce GTX 560 Ti GPU with

(a) Air flow around helicopter. Top: input line (b) Flow in wake of a wall-mounted cylinder. Set (c) Streamlines in a hydrocyclone. An increase of A
set (¢ = r = 0). Bottom: Set ¢ = 0.2, 7 = ¢ = 0.4, A = 1.5. Top: visual clutter in back- emphasizes important lines, i.e., the conical outflow

0.16, A = 3 to fade out unimportant parts.

ground at r = 0. Bottom: resolved by 7 = ¢/10. part. (g = 2, top: A = 2.3, bottom: \ = 2)

Figure 4: Effect of parameters q,r and . Curvature is used as importance for all data sets.



Figure 5: Comparison to other line selection algorithms. Columns from left to right: input line set (i.e., all lines), [Marchesin et al. 2010],
[Giinther et al. 2011] and our approach. Data sets are in rows, top to bottom: Borromean rings, flow around a descending helicopter,
tornado, aneurysm and Rayleigh-Bénard convection. Our method brings out specific features that are otherwise occluded, i.e., rings, vortex
cores, the aneurysm (cf. Fig. 6(b)), and the convection cells (cf. Fig. I).



(a) line length,p =2, A =5

(b) curvature, p = 0.2, A = 2.5

Figure 6: Tensor and flow data in medicial imaging: (a) Diffusion tensor lines. (b) Blood flow in vessel with an aneurysm.

2 GB VRAM. The number of frames, h;; assemblies, and solves
per second are listed for all referenced figures in Table 2. Note that
the assembling, solving, and rendering run in parallel. Thus, the
slowest component poses the bottleneck, which was in all but two
cases the solving. The only exceptions were the Rayleigh-Bénard
convection in Fig. 5, due to the high number of transparent lay-
ers, and the dice in Fig. 7, for which the optimization problem was
small so that the rendering was slower. The streaming of the frag-
ment linked lists to the CPU took always 22 ms (due to the constant
fragment pool size). All results were computed for a resolution of
1200 x 1000 with 16 x coverage-sampling anti-aliasing (CSAA).

Table 2: Performance: Frames per second (Fps), assemblies of h;;
per second (Alg. 1) and solves per second (including computation
of Q), with n being the number of segments. The bottleneck is bold.

[ Data set | Figs. | Fps [ Asm.J/s [ Sol/s | n |
Aneurysm 5 14.9 3.6 1.0 | 3,816
Aneurysm 6(b) 25.6 7.1 14 | 3,816
Bénard 1 13.1 5.6 2.0 | 2,224
Bénard 5 8.4 14 4.0 | 2,224
Borromean 1,5 38.5 14.6 3.3 | 2,936
Brain (axial) 6(a) 57.1 15.2 3.4 | 5,808
Cylinder 4(b) 294 13.2 114 | 3,776
Dice 7 | 128.2 196.9 | 163.9 576
Heli Brownout 4(a) 26.0 79 1.1 | 8,136
Heli Descent 1,5 19.3 10.8 1.9 | 6,896
Hydrocyclone 4(c) 22.8 7.6 4.6 | 2,016
Tornado 1,5 27.7 11.4 3.5 | 2,648

6.2 Limitations

Our approach strives to keep a balance between information pre-
sentation and occlusion avoidance. There are two cases, shown in
Figure 8, when it does not get meaningful results:

e There are too many important structures: for the example
of streamlines in a turbulent flow, the whole domain may
be densely covered with important lines, leading to a simple
depth cueing as optimum.

e There are too few important structures: if all lines are of low
interest (e.g., streamlines in a laminar flow), the optimum also
gives a simple depth cueing.

Although both cases can occur, we do not consider them as critical.
For turbulent flows, as in the first case, streamlines are generally
not an adequate approach for visual representation, since the shape

of particular lines is dominated by randomness. In the second case,
a high-quality rendering of a dense line field is not really necessary
because of its simple structure.

Another limitation is the fact that our optimization does not explic-
itly incorporate the density of the lines. If many lines are spatially
close to each other, the algorithm will assign similar opacities to
them. In this case, a better result may be to assign one representa-
tive a high opacity and to make adjacent lines less visible. Since this
leads to non-linear optimizations, we leave it to future research.

7 Conclusions

In this paper, we introduced the first method for line selection in
3D line fields that is based on a global optimization: We computed
a globally optimal opacity for polyline segments by minimizing a
quadratic error function, which formalizes desired properties (favor
opaque lines, reduce occlusions, smooth opacity gradient along the
lines). Our approach can be steered by a-priori domain knowledge,
and it attains interactive, frame coherent and view-dependent visu-

Figure 7: Trajectories of three falling dice. Each casts eight speed
lines, which are partially faded out to reveal the helical trajectory.
(curvature as importance, p = 0.15, r = 0.1, A = 2.5)
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(a) Turbulent flow with only im- (b) Laminar flow without any impor-
portant lines. (p = 4, r = 8) tant lines. (p = 0.1, 7 = 0.1)

Figure 8: Limitations: for extreme cases with no prominent feature
to bring out, the results of our method resemble depth cueing.



alizations. Moreover, it is the first approach that resolves occlusions
effectively for every viewpoint position.

For the future, we plan to apply our line selection to unsteady line
fields, for which the subdivision must then be modeled in a frame-
coherent way. An automatic parameter setup can be further inves-
tigated for a faster exploration of large numbers of data sets. The
setup of the system (Alg. 1) may benefit from using the GPU.
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