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Abstract

Two-dimensional transfer functions are an effective anttaeepted tool in volume classification. The design of
them mostly depends on the user’s experience and thus remainallenge. Therefore, we present an approach
in this paper to automate the transfer function design base@D density plots. By exploiting their smoothness,
we adopted the Morse theory to automatically decomposeetitere space into a set of valley cells. We design
a simplification process based on cell separability to atiaté cells which are mainly caused by noise in the
original volume data . Boundary persistence is first introeld to measure the separability between adjacent cells
and to suitably merge them. Afterward, a reasonable classifin result is achieved where each cell represents a
potential feature in the volume data. This classificatioagadure is automatic and facilitates arbitrary number
and shape of features in the feature space. The opacity of feature is determined by its persistence and size.
To further incorporate the user’s prior knowledge, a hiafgical feature representation is created by successively
merging of the cells. With this representation, the userllisnaed to merge or split features of interest and set
opacity and color freely. Experiments on various voluneedata sets demonstrate the effectiveness and usefulness
of our approach in transfer function generation.

Categories and Subject Descriptofsccording to ACM CCS) 1.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction located in the multi-dimensional feature space have com-
plex shapes. Thus, extensive interaction is required te-ide
Direct volume rendering is a powerful and flexible visual- tify these features properly.
ization technique for exploring scalar volume data. By us-
ing appropriate transfer functions an amount of important
structures of the data can be revealed. The use of multi- In order to ease the interaction, many proposed algorithms
dimensional transfer functions has already attracted much decompose the feature spaces into several meaningful clus-
attention due to their unique capability to identify vasou  ters MWCEQ9RBS055VG06TM04,WCZ*11] and allow
structures within a volume. In particular, certain 2D trans the user to explore these clusters. Although the classditat
fer functions based on scalar values and gradient magsitude results produced by these algorithms seem to be reasonable,
are very effective in extracting multiple materials andithe  most of them require some input from the user, e.g., to spec-
boundariesllev88. The 2D transfer functions can be spec- ify the number of clusters. This poses a difficulty on interac
ified through an iterative process in which the user has to tive volume classification, especially when the user is aot f
place widgets on the potential regions within a featurespac miliar with the data. Furthermore, several of these methods
and then manipulate them according to the rendering results are based on traditional discrete histograms, which ignore
Without having adequate prior data knowledge this is a time- the spatial relationship of neighboring data. For most ef th
consuming process. Moreover, the commonly used widgets data sets, they may contain spurious peaks and valleys which
(e.g., rectangle, triangle, ellipse) are regular whilefess will reduce the performance of clustering algorithms. More
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Figure 1: Clustering the density plot on the value (x-axis) and valkeglignt magnitude (y-axis) feature space to visualize the
Feet data set. By decomposing the density plots (top oné)intfle automatically generated transfer function (middie in
(b)) is obtained. The corresponding rendering result (&p@s the relationship between the skin and the bones. iéftetoring
the bone and lowering the opacity of soft tissue, the ankietaa bones are clearly shown in (c). The barcharts in (b)espnt

the opacities of the corresponding features.

importantly, they may lead to some feature being glossed
over or completely missedW08].

In this paper, we propose an approach to automate the

generation of 2D transfer functions with no assumption on

then successively eliminated and the corresponding cals a
merged together to suppress the noise. The final configura-
tion of cells represents a potential feature of the data.

This automatic classification and transfer function design

the number nor the shape of the clusters in the feature space.scheme can help the user to get a fast grasp on the spatial

Rather than brushing the 2D histogram, our approach is
based on the analysis of the density plots, which can draw
the viewer to preattentively identify clusters while avioml
uncertain onesHKLT10]. In general, a density function of
the density plots can be constructed by kernel density esti-
mation [Sil9g] or continuous scatterplot8NV08]. The for-

mer estimates distribution comes from the statistical tunce
tainty of the samples themselves, the latter considers-inte
polation between data voxels and conservation of physical
variables. We refer toJJWCEQY and [BWO0§] for detailed
description of these methods. Following the principle that
features tend to form peaks in the density functiBarPg,

we use the theory of Morse comple&rha6] to decompose
the feature space into sevevalley cellsseparated by valley
lines. These cells form the initial clustering where eact on
contains a local maximum.

Due to the noise in the original data, the initial cluster-
ing contains a large number of small valley cells. Noise
artifacts disturb the quality of the visualization. Thenef,
inspired by the persistence-based topological simplifica-
tion [EHZ03, we merge adjacent valley cells according to
their separability. We define boundary persistence of two ad
jacent cells, which measures the degree of separability. A
threshold, according to some heuristiGNP*06], is deter-
mined by analyzing the persistence histogram. All bound-

relationship between features. However, further expionat
such as refining the clustering, adjusting opacities and col
ors are usually necessary to produce a satisfactory rewgeri
result. There are many reasons for these user interactions,
one being that human beings are often not able to identify
more than five targetsHea9§. In the case that there are
many statistically significant features in volume dataysho

ing them all in one rendering is neither simple nor appro-
priate. Another reason is that the user may have some prior
knowledge about the features of interest and some prefer-
ence about how they should be presented. Thus, we further
design a persistence-based hierarchical representdtiba o
semantical features by successive simplification of the-aut
matic classification. Based on this feature hierarchy, ez u

is allowed to merge or split features and set opacities and
colors for them. In summary, the main contributions inctude

e a new topology-based non-parametric clustering algo-
rithm that structures the 2D density plots into several
meaningful volumetric features,

e a topological simplification of valley cells based on the
proposed boundary persistence to remove noisy cells,

e and a new transfer function design scheme that allows the
user to effectively explore the volume data.

We present an approach to automate the transfer function

aries whose persistences are smaller than the threshold arelesign. Here, automating means that the initial transfes-fu
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tion is automatically generated and the feature hierarshy i
automatically adjusted within the user interaction. Fig.

functions. In order to distinguish distinct features thzdre
the same scalar value, Weber et &[DC*07] indexed var-

shows an example of our classification results on the CT Feet ious subregions of a volume by using contour tree and ap-
data set by clustering the density plot of the value and value plied separate transfer functions for each subregion. hou
gradient magnitude. The rest of the paper is organized as fol al. [ZT09] further extended this work by introducing con-
lows. We provide the related work in Secti@nThe valley tour tree-controlled residue flow model and color harmonic
cell decomposition and automatic transfer function design to automatically generate appropriate transfer functmm f
are described in Sectidhand Sectiort. Finally, the imple- each subregion. Unlike these works, our work focuses on
mentation and experiment results are presented in Segtion the automating of the 2D transfer function design based on
and the conclusions are drawn in Sectén the analysis of the topological structures of 2D densitygplo

Morse-Smale Complex.The MS complex provides an ab-
stract representation of the gradient flow behavior of sescal
field [Sma61 However, it was originally developed for
Previous work related to our work is divided into three smoothing functions. By extending its construction to piec
different categories: multi-dimensional transfer fuonti wise linear 2-manifolds, Edelsbrunner et &Hz03 used
topology-based transfer function, and Morse-Smale (MS) it to perform a controlled simplification of the height field.
complex. Bremer et al. BHEP04 improved this algorithm and de-
scribed a multiresolution representation to approximage t
simplified results. Through repeated application of atomic
cancellation operations, Gyulassy et @NP*06] used dis-
crete MS complex to simplify volumetric data. To accurately
extract salient edges on the surface, Weinkauf eVéG09
introduced a new concept of separatrix persistence, which
treats ridge lines and valley lines independently. By mea-
suring the significance of the boundary between two adja-
cent cells, our proposed boundary persistence can be used to
maximize the separability of the extracted structures.

2. Related Work

Multi-dimensional Transfer Function. Since 1D transfer
functions cannot identify different materials with simmila
intensities, the 2D transfer functions based on scalar val-
ues and gradient magnitudes are proposéevgg. They

are very effective in extracting multiple materials andithe
boundaries. Inspired by this work, several effective met-
rics are incorporated into the feature space, such as curva-
ture [KWTMO3], feature size CMO08], and ambient occlu-
sion [CMO09]. With the feature space constructed by these
metrics, the structures of interest in a volumetric datzaet

be characterized. However, adding dimensions to the featur
space further complicates the problem of the transfer func-

tion design. 3. Topology-based Non-Parametric Clustering

To reduce the number of degrees of freedom in transfer Our topology-based clustering method decomposes the fea-
function design, several semi-automatic methods are pro- ture space into several clusters. Compared to previous-meth
posed which provide the user with some suggestive trans- ods MWCEQ09 WCZ*11], our method does not make any
fer functions. By using machine learning algorithms to ana- assumption on the number or shape of the clusters. In or-
lyze these feature spaces, such as the ISODATM{4], der to perform peak-valley analysis, we apply the theory
hierarchal clustering§VvGO0§, kernel density estimation of Morse complex $ma6l. For a smooth function, non-
[MWCEQY, and Gaussian mixture modeMCZ*11], the intersecting ridge lines and valley lines exit between ksld
suggestive transfer functions can be automatically obthin ~ and extreme where each saddle is connected with two max-
Unfortunately, most of these algorithms require the user ima viaridge lines and two minima via valley lines. The val-
to specify several parameters before the clustering. This ley (ridge) lines together with their ending points decos®o
poses a great workload to the user. Followibd)yCEQY, the domain into non-overlapping valley (ridge) cells where
our clustering method also works on the continuous feature each one contains an isolated maximum (minimum).
space but it does not require the number of the histogram
bins. Although the hierarchal clustering algorithS8MG0§
does not require the number of clusters, its classificaten r
sults are sensitive to the initial clustering result whiler o
density function-based clustering resolves this issue.

Our decomposition algorithm is inspired by the Morse
complex construction scheme iBHflZ03. As in [EHZ03,
we tessellates the feature space into a 2D triangular mesh,
which enforces a piecewise linear approximation of the den-
sity function. This discrete representation enable fastar
Topology-based Transfer Function.Because topology is points identification and ridge line, valley line tracingout
convenient to characterize global structures of the ddta se ever, it also introduces degeneracy, for example, muldi-fo
it has been introduced into the transfer function specifica- saddles and intersecting valley or ridge lines. Specialre
tion. Based on the analysis of 3D field topology Fujishiro ments such as path extension are proposediiZpD3 to
et al. [FAT99] proposed an automating transfer function de- deal with the degeneracy and construct Morse complex. The
sign scheme. Takahashi et al'TIFNOS used the topologi- main difference between our algorithm areHZ03 is due
cal attributes derived from the contour tree to define teemsf  to that our goal is to extract valley cells not the MS com-
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Figure 2: The pipeline of our clustering algorithm illustrated withet 2D density plot of the Feet data set (value on the x-axis
and value gradient magnitude on the y-axis). First, thei@aitpoints are identified where maxima are colored in redjdias

in green, and minima in blue in (a) and the valley lines argaoted shown in yellow. Due to the low resoluti®b6 x 256)

of the density plot the obtained valley lines are not smobtten, the density plot is decomposed into several valldy ¢l
where each cell has a maximum and the bar chart of sorted yngersistence (d) is provided. By analyzing the bar chart,
the valley cells are simplified with a threshold and most efdmall valley cells are merged in the results (c).

plex. No saddle-maximum relation has to be determined in shareu as a vertex, and thiewer star consists of the sim-
the line tracing stage, and we simplified the special treat- plices that haves as the highest vertex. We defindcaver
ments needed to deal with the degenerated cases. The boundwedgeas a contiguous section of lower star. As shown in
ary persistence introduced in section 3.2 can be consideredFig. 3, the lower wedge ofi contains a numbek + 1 of

as an analogue of the saddle-maximum pair persistence inwedges. The vertey is defined as aegular if k = 0 and
[EHZ03 and is calculated later in the decomposition stage ak-fold saddlef k > 1.

using an effective region growing techniqu¢H74. Finally,

we remove insignificant cells introduced by the noise with
a modified persistence based topological simplification pro
cess. Afterwards, each cluster formed by merging valley
cells represents a potential feature in the volume data as
shown in Fig.1. Fig. 2 illustrates the pipeline.

After identifying the critical points, we tradet 1 paths of
steepest descending from evérfold saddle. Starting from
each saddle, each path follows a sequence of steepesttdescen
edges. When the function is smooth, each path will terminate
at a minimum (1, my, m in Fig. 4). For degenerated cases
caused by piecewise linear discretization, we terminage th
path when it hits: (a) another sadd&; (n Fig. 4(a)) or (b) a
previously traced path at a regular poidtif Fig. 4(b)) .

In case of Fig4(b), we consider vertex J as antificial
saddle because it is the maximum vertex on the path separat-
ing regionsR, andR3. Then, each boundary between adja-
cent cells has at least one saddle, which is a local maximum
of the density function on that boundary.

3.2. Valley Cell Construction

In order to construct the valley cells, we use the region grow
saddle 2-fold saddle ing method from HP74. Starting from each maximum, this
technique recursively grows the regions of neighboring tri
angles and stops at the valley lines or the triangles whose
vertices are minima. During the growing procedure, we also
construct the correspondence between maxima and saddles.

Figure 3: The classification of a vertex in blue is determined
by the relative value of the vertices in its star. The neighbo
ing vertices are colored red if its value is larger and greén i
its value is smaller.

Saddles Update:After the region growing, each saddle
has a connected maximum set. For correct merging of val-
ley cells later, we have to adjust the correspondence betwee
saddles and maxima. We calculate its persistence by taking
Following the definition in EHZ03), the star of a vertexu the smaller difference between the saddle and the maxima.
consists of all simplices (vertices, edges and triangles) t  As shown in Fig4, some saddles belong to more than one

3.1. Tracing Valley Lines

(© 2012 The Author(s)
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simplification process to remove the noisy cells. Similar to
the saddle maximum pair persisten&Hz03, the bound-

ary persistence measures the separability of the peaks-on ad
jacent cells. Therefore, we use it to determine the order of
cell merging because the cells caused by the noise usually
have a small persistence.

We successively eliminate the boundary associated with
the smallest persistence and merge the corresponding cells
(b) together until a given persistence threshold is reached- Co
sistency of the boundary persistence is maintained by up-
dating the cells after every merging. F&(d) shows that a
high percentage of persistence takes place at a very small
value. Gyulassy et al@NP*06] observed that 10% of the
maximal persistence is sufficient to detect and remove all in
significant features in their case. For density plot, oureexp
rience indicates that. 0% — 1.5% is sufficient. As shown in
Fig. 2(c), most of cells are merged with the threshol8%
cellin the degenerated cases. In Fi(a), saddleSs belongs of the maximal persistence. With this default threshold, ou
to six cells. In Fig4(b), the artificial saddl@ belongs to 4 gigorithm automatically generates meaningful clusters. T

cells. In other words, they have been associated to more thanhelp the user to select a proper threshold, we additionally
two maxima. To resolve this issue, we introduce saddle du- provide a persistence bar chart to reveal the noise level of

plication. If the maximum set of the saddihask maxima, the density function.
we duplicatek — 1 saddle as shown in Fig This is similar

to the unfolding of the&-fold saddle EHZ03. However, we ) ) )
only duplicate the saddle without paths. 3.4. Comparison to Other Clustering Algorithms

In principle, our Morse complex-based clustering alganith

is a new variant of watershed transformatid®M00] but

in a hierarchical sense. For twice continuously differen-
tiable functions, its decomposition result is similar te th
watershed transformation. The major difference between
them is the hierarchy construction algorithms. To deter-
mine the separability of boundaries between clustersahier
chical watershed segmentatiddelu94 requires first flood-

ing the cluster and then detecting whether overflows occur
and mean shift involves a computationally expensive pro-
Figure 5: Duplication of a saddle where several valley lines cess §ha03Z2ZM10] to find saddles between clusters. In-

Figure 4: Two degenerated cases when tracing valley lines:
(a) paths ending at a sadd®;; (b) paths ending at a junc-
tion J. To ensure that every boundary element is associated
with at least one saddle, the junctiahis regarded as an
artificial saddle.

meet. (Left) Three valley lines cross at the sadgjléRight) stead, such relation in our algorithm is intrinsically dete

The original saddl&Sis replaced by three saddl&s,S,, and mined in the region growing procedure, which can be carried

Ss. out quickly using flood-fill. In addition, we are the first who
apply those techniques for the automatic design of transfer

. functions.
Boundary Persistence:Up to now, each saddle has a set

of two maxima and each boundary has at least one saddle. Concerning this, Maciejewski et alM\WCEQY clearly
To define the degree of separation of two adjacent cells, we show the need for an automatic transfer function design for
introduce the boundary persistence, which is defined as the volume data. Their approach clusters the feature space base

minimal persistence of its saddles. Although it is still defi on frequency binning of the 1D density histogram where re-
by the persistence of saddles, it determines the lifetintieeof gions with similar frequencies are regarded as one cluster.
boundary in the merging procedure. more detail, their approach estimates a 1D histoghéim)

from a densityf (x,y) given over a 2D feature spa¢r,y).
The size of the bins of the 1D histogram h are finally used
to cluster the feature spaéey) and to build up the transfer
Due to the discretization of the density plots and the noise function. Unfortunately, only the value of the densftix, y)

in the original data, there are a large number of small val- in the feature space is considered but not the positioy),

ley cells after the region growing procedure. Since the goal although the same value of the dendity, y) which appears

of volume exploration is to reveal semantic features in vol- in different regions in the feature spatey) might belong
ume data, we introduce a boundary persistence-based cellto different structures within the volume data. Thus, our ap

3.3. Valley Cell Simplification

(© 2012 The Author(s)
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proach also considers the position within the feature space
by directly considering topological information.

Fig. 6 illustrates the comparison of the clustering results
produced by these two algorithms on a 1D density function.
This density function consists of the two mixture Gaussian
functions. It can be seen that our method separates the den
sity function into two parts, while the binning method greup
it into three bins where each bin has several same colored
disjoint segments after setting the bin number of the den-
sity histogram to 3. A visible peak in the feature space cor-
responds to an interesting feature, which has been demon-
strated in KD98], while frequency binning lacks an intuitive
explanation.

1.5 ‘Y 1.5 4
1.0 1.0
7\ A\
0.5 / -------------- \/ ----- \ 0.5
X X
0 P 0 P
0 05 10 15 20 0 05 10 15 20

(a) (b)

Figure 6: Comparison of the frequency binning-based clus-
tering method result and our method. (a) After specifyirgy th
bin size of the density histogram to 3, the binning method
groups the density function into 9 segments; (b) our method
separates it into two clusters.

4. Transfer Function Design

With a certain persistence threshold, our clustering algo-
rithm decomposes the 2D density plot into several valley
cells. Each cell represents a potential structure withen th
volume data. Similar toNIWCEOQ9 WCZ*11], we gener-

ate a transfer function by coloring these cells. By using a
gualitative color schemeBfe04, different cells can be well
distinguished in the feature space. However, the userés oft
not able to identify more than five targetéda9§. Although

we can automatically select the persistence thresholdaso th
there are always no more than five clusters left after the sim-
plification, we do not think this is appropriate becausedher
is no guarantee that the number of significant features in a
volume data is always below five. Instead, we set a safe per-

sistence, just enough to remove the noise and construct a

hierarchical tree to reveal the level of significance. Fram o
experience, the number of remaining clusters are usuaiy le
than 10 using a threshold of 1% of the maximal persistence.
Based on this tree, we introduce a new opacity transfer func-
tion generation method to maximize the differences between
different features.

4.1. Hierarchy Construction

After the valley cell construction, each boundary between
two adjacent cells is associated with a boundary persistenc
which determines the order of cell merging operation. The

tree can be constructed by merging the initial valley cells
with a progressively increasing persistence thresholthef
boundary between two adjunct cells is removed, we build the
parent and child relationships and update the maximum sets
and boundary persistences of the other boundaries. In this
tree, the root corresponds to the cell with the largest local

maximum. Fig.7 shows the tree constructed for the Feet data
set.

RN

i5

(b)

(@)

Figure 7: The tree construction for the density plot of the
Feet data set. (a)Three snapshots in the merging process.
(b)The constructed tree.

With this tree, the user can interactively merge and split
features. When the user selects one cell, the cells which can
be merged or split are highlighted. This makes the explo-
ration of the feature’s hierarchy convenient. By defauke, w
do not introduce new color in merging and splitting. After
merging two cells, the cell with the smaller maximum is col-
ored the same as the one with a larger maximum, while the
cell generated by splitting is colored by its original cabe-
fore merging. Certainly, the user can also assign new color.

4.2. Opacity Transfer Function Generation

Cell PersistenceWhen removing the boundary between
two adjacent cells, these cells as well as their correspgndi
features are merged together. Thus, we define the persstenc
of each cell as the smallest persistence of its boundaries,
which reflects the degree of separation of the corresponding
features.

Initial Opacity Range Usually, the feature with a small size

is occluded by other features. To help the user perceive all
features, the opacity range for each node in the tree is com-
puted by:

w
i = Omin+ ——9(di),
i min S'pcig( i)
wheredmin is the minimum opacity specified by the user,
ands is the feature size angd, is the cell persistence of
the nodd. W is the normalization weight, which normalizes
the 1/(s- pg) into [0,1], andg(d;) is a depth-based control
function:
di — dmin
d)=—"—,
o(ch) dmax — Omin
whered; is the depth of nodein the merge tree ardj,;, and
dmax are the minimum and maximum depth. The opacity
bar charts in Fig.1(b) show the automatically generated

(© 2012 The Author(s)
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Ours MIW [ MWCEOQ09
Parameter plot density plot density plot
features specification peak binning
Number of features | automatic specified
Merging of features | persistence no guideline
Interactive refinement hierarchy arbitrary

Table 1: Properties of our method to previous work.

opacity for each feature where skin and air are set to very
low opacities. We do not expect that the initial opacities
always produce desired rendering results. Thus, we allow
the user to manually adjust the opacity value for each cell.

Gaussian Transfer Function With the automatically ob-
tained opacity ranges, we use the Gaussian transfer fanctio
(GTF) which can facilitate high quality pre-integrated -vol
ume renderingKP1*03] to generate actual opacity values:

a(x) = Amae 2 W ET W),
whereamax is the determined opacity range and! is den-
sity covariance in the corresponding valley cell. By deffaul
M is the position of the maximum. When the maximum is
located near the boundarigsis set as the center of the clus-
ter. To avoid that the Gaussian function makes contribution
to other features, we compute a bounding box for its corre-
sponding valley cell. The opacity on the region outside the
bounding box is zero.

4.3. Comparison to the State of the Art

In this section, we qualitatively compare this method with
the approach inNIWCEQ9. We refer this approach as MIW.
Both these two methods are based on density plots. However,
there are four main differences. First, the clusteringgiin
ples are different as discussed in Secoh Second, MIW
requires the user to specify the number of histogram bins,
while our method can automatically determine the number
of features. Third, MIW does not provide any guideline for
parameter space simplification, our method uses cell persis
tence. Last, their initial classification result can be tael

ily merged and split, while our hierarchy representation ca
help the user effectively explore features of interest.

5. Experiment and Discussion

We have implemented and tested our approach on a PC with
an Intel Core 2 Duo E6320 1.8 GHZ CPU, 2.0 GB RAM, and
an NVIDIA Geforce GTX 260 video card (256 MB video
memory) using the Cg Language. For the density plots pro-
vided by CSPs, we use the code B\WJ/09]. By setting the
error threshold to 50 and the resolution to %,561e den-

sity plots can be generated in less than 1 hour. After obtain-
ing the density plots, our clustering algorithm finishes the

(© 2012 The Author(s)
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volume classification in 10 seconds and results in an inter-
active volume exploration. Note that the rendering perfor-

mance gradually decreases with the number of valley cells,
because the GTF-based volume rendering is directly evalu-
ated on the GPU. In general, the number of valley cells is

less than 10, which results in a volume rendering frame rate
of approximately 25 fps.

5.1. Medical Data

Fig. 8 shows an example that classification of the value and
value gradient magnitude feature space in the Teeth data set
By simplifying this density plot with persistence threghol
1.0% of the maximal persistence, our method automatically
clusters this density plot into twelve parts and obtaingan i
tial classification result as shown in F&(a), where enamel
and pulp are revealed but not clearly due to some noise.
Through merging of some cells located at the region of low
densities and adjusting their colors and opacities, weilobta
a better result where the spatial relation among enamel, den
tine, and pulp are clearly revealed, as shown in 8{g).

In the above example, each cell in the density plot cor-
responds to a meaningful feature. While our clustering al-
gorithm is based on topology-based peak analysis, it cannot
guarantee that the user is interested in all extractedriestu
especially some features produced by noise. Thus, merg-
ing the uninteresting features not only facilitates thelexp
ration of feature space but also improves the classification
quality. Fig.9 shows the effectiveness of our exploration
scheme in surgery repair on a CT facial deformity data set
(512x 512x 361). The data set was acquired from a facial
deformity patient where the regions located near the upper
jaw and the top of the skull are damaged. The damaged re-
gions must be identified before the surgical planning proce-
dure. We obtained the initial result (Fi§(a)) after decom-
posing the density plot of value and value gradient magni-
tude feature space into 7 cells (the middle one in Bfb)).

A lesion and a damaged region in cyan where some teeth are
absent are seen, but the relationship between these regions
the skull and the face is not clear. By examining each cell, we
found that the corresponding features of peach, pale green
and blue cells are skin and then merged them into one cell
(the bottom one in Fig9(b)). After recoloring and adjust-

ing their opacities, a better result (Fig(c)) was achieved,
where the lesion in cyan and the damaged region with some
teeth absent are clearly illustrated. Fi¢c) shows the corre-
sponding feature of each cell. We can see the skin, bone and
lesion are clearly differentiated.

5.2. Simulation Data

To demonstrate the effectiveness of our approach on simu-
lation data sets, an experiment was conducted on the Super-
nova data set (432 432x 432). In this data, scientists are
interested in the turbulent structures which are near the co
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Figure 8: Exploring the CT Teeth data set using the density plot onahee\(x axis) and value gradient magnitude (y axis) fea-
ture space. (a) The result with the automatically generatadsfer function; (b) By merging several small cells ancalering
the left cells, the spatial relations among enamel, deraime pulp are clearly shown.

of the supernova but occluded by the outer layer. To reveal composing density plots. By allowing the user to interac-
these structures, we apply our automating transfer functio tively explore the pre-computed clusters in the featurespa
generation method to decompose the density plot of scalar he/she gets an initial understanding of the underlying data
value and value gradient magnitude feature space and obtainset. With a feature hierarchy, the uninterested featuras ca

five clusters, as shown in the left of Fit0. From the initial be merged or removed to improve the visualization quality.
rendering result, we can see that the cell in sky blue cor- This scheme has proven to be effective and efficient over
responds to the inner turbulent structure. Unfortunatély, various types of volumetric data.

opacities of other features are too small to reveal thaiicstr
tures. After examining each feature, we find two different
outer layers for two cores and another inner layer in the left
core. By recoloring and adjusting their opacities, theigpat
relationship between the inner turbulent structures aed th
out layers is well illustrated.

In the future, we would like to extend our approach to
decompose 3D volume by browsing the idea from the 3D
morse complexEHNPOJ. Likewise, analysis of the density
volume can well classify the time-varying data set.
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Figure 9: Exploring the CT facial deformity data set using the dengibg on the value and value gradient magnitude feature
space (top one in (b)). The automatically generated trarfsfection (middle one in (b)) and its corresponding renderresult
(a). After merging the peach, pale green and blue cells andleging and adjusting their opacities, a new transfer ftiog
(bottom one in (b)) and its corresponding rendering resditi§ obtained, and the corresponding features of the foustelrs

in the new transfer function are shown in (d). The barchanmthi) represent the opacities of the corresponding features
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Figure 10: Exploring the Turbulent dataset by decomposing the depsityon the value and value gradient magnitude fea-
ture space. The result (left) with the automatically getedatransfer function. After recoloring and adjusting ojies, the
relationship between inner and outer layer structures é&adly shown.

(a) (b)
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Figure 11: Exploring the Turbulent dataset by decomposing the dep#ity(a) on the pressure (x axis) and vorticity (y axis)
feature space. (b) The result with the automatically geteetaransfer function; (c) By adjusting the opacities of fiem cell
and green cell and recoloring them, the kinking and tangliogex tubes become clearly visible with a large contrast.
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