
Couple Points – A Local Approach to Global

Surface Analysis
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Abstract. We introduce the concept of couple points as a global feature
of surfaces. Couple points are pairs of points (x1,x2) on a surface with
the property that the vector x2−x1 is parallel to the surface normals both
at x1 and x2. In order to detect and classify them, we use higher order
local feature detection methods, namely a Morse theoretic approach on
a 4D scalar field. We apply couple points to a number of problems in
Computer Graphics: the detection of maximal and minimal distances of
surfaces, a fast approximation of the shortest geodesic path between two
surface points, and the creation of stabilizing connections of a surface.

Keywords: surface features, double normals, Morse theory, triangular
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1 Introduction

Size, complexity and number of surfaces considered in Computer Graphics are
continuously growing. One popular approach to deal with this is the extraction
of characteristic features of a surface. Feature extraction has a variety of appli-
cations such as segmentation, shape matching, reverse engineering, compression
and simplification of surfaces.

Generally, two kinds of surface features can be distinguished: local and global
features. For local features it can be decided entirely by a local analysis whether
or not a point on the surface belongs to the feature. For global features, this
decision can be made only by a global analysis of the surface.

Examples for detecting local features on surfaces are the estimation of the
curvature tensor (see, e.g., [1, 8, 19, 22] or the survey [11]), the estimation of sur-
face normals, or the detection of sharp edges. Examples for global features are
the detection of medial axes [3, 23], the shortest distance between a point and a
surface [9], and the detection of the shortest geodesic path between two points on
a surface. This is an interesting and well-studied problem which leads to solving
the associated PDE by propagating wave fronts [15] or to unfolding a polyhedral
surface [2, 24, 26] (see also [17] for a general survey). While such algorithms are
efficient for single-source approximations of shortest paths, they may be rather
expensive if paths between arbitrary point pairs have to be computed. Alterna-
tive methods apply energy (arc-length) minimization [10, 13, 20] for a curve in
a manifold, where a reasonable initial guess is required, e.g., from searching a
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discrete shortest path. In contrast to the point-point problem which imposes a
boundary value problem, the construction of a straightest geodesic path starting
from a point and proceeding into a given direction is much simpler: such initial
value problem depends entirely on a local analysis [21].

A combination of local and global features is the extraction of Morse com-
plexes on a surface [4, 5, 18]. Given a smooth function m on a surface, Morse
complexes divide the surface into areas of similar behavior of the gradient flow
of m. To do so, critical points — i.e., points with a vanishing gradient of m —
are extracted and classified into sources, sinks, and saddles. Then certain sepa-
ration curves are integrated from the saddles in forward and backward gradient
direction. Once the scalar field m is given, the extraction of the critical points is
a local process. However, the integrated separation lines reveal a global feature:
local changes ofm can cause potential changes of the separation lines everywhere
on the surface. Also note that the underlying Morse function may be obtained
by a local or a global [12] analysis of the surface.

This paper introduces a new global feature of the surface called couple points.
These are pairs of points (x1,x2) on the surface with the property that the
vector x2 − x1 is parallel to the surface normals both at x1 and x2. In order
to extract and classify them, we do not apply a global analysis of the surface
but a local feature analysis on pairs of surfaces instead. This way we are able to
apply standard local analysis tools to achieve a global analysis of the surfaces.
We show that in general there exists a finite number of isolated couple points.
We believe that number, location, and classification of couple points reveals a
relevant information about the global shape of surfaces.

We remark that the general concept of couple points is not new. In fact, the
definition of double normals is equivalent to couple points, and there a number
of interesting problems in geometry related to them, e.g., finding their minimum
number for convex bodies in En [14] or for smooth curves [7] of certain topology.
We are interested in the detection of couple points and applications in computer
graphics.

The remainder of this article paper is organized as follows: Section 2 gives
the definition of couple points and shows a first simple example. Section 3 col-
lects properties of couple points on smooth surfaces. To do so, we apply Morse
theoretic approaches to an appropriate 4D scalar field and show that the couple
points correspond to the critical points of this 4D Morse complex. Section 4
shows how to extract and classify couple points on triangular meshes. In Sec-
tion 5 we apply couple points to the following problems: first, we detect minimal
(or maximal) distances between two surfaces (a problem which is far more com-
plicated than the problem of finding the shortest distance between a point and
a surface). Second, we use couple points to compute a fast approximation of the
shortest geodesic path between two points on a surface. And third, we use couple
points to find stabilizing connectors on surfaces in order to increase the surface
stability. Finally, Section 6 draws conclusions and mentions future research.
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Fig. 1: Three applications of couple points. Left: a fast approximation of the
shortest path between two surface points (yellow) passing trough five couple
points. Middle: shortest (green) and largest (red) distance between two surfaces.
Right: stabilizing connectors between parts of a surface.

2 Motivation and definition of couple points

To introduce the idea of couple points, we start with a simple 2D example. Given
are two closed differentiable curves x1,x2 which do not intersect each other. We
search for the minimal and maximal Euclidean distance of x1 and x2, i.e., for a
pair of points (xmin
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Figure 2a gives an illustration. In this picture we can also observe a property of
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Fig. 2: a) Pair of points (xmin
1
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2

) and (xmax
1

,xmax
2

) with minimal and maxi-
mal distance. b) A couple point. c) Classification of couple points in sink (red),
source (green) and saddle (blue).
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to surfaces gives reason for the following definition of couple points:.

Definition 1. Given two differentiable surfaces x1,x2 together with their nor-
mal maps n(x1),n(x2), a couple point xc = (xc

1
,xc

2
) is a pair of points with
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Furthermore, let C(x1,x2) be the set of all couple points between x1 and x2.

Figure 2b illustrates a couple point. Given two surfaces x1 and x2, there is
in general a finite number of isolated couple points between them. This paper
is devoted to studying their properties and their applicability to a number of
problems in Computer Graphics. Couple points can also be computed on a single
surface, i.e., for instance C(x1,x1) can be extracted.

3 Properties of couple points

In order to capture useful properties of couple points, we first assume x1 and x2

to be parametric surfaces. Then we apply a Morse theoretical approach to the
4D domain of x1 and x2 and show that our derived properties of couple points
are independent of the particular parametrization of the surfaces.

Given two regularly parametrized surfaces x1(u, v) over a 2D domain D1 and
x2(s, t) over a 2D domain D2, we define a double surface xd as

xd(u, v, s, t) = (x1(u, v),x2(s, t)). (1)

This means that xd is a map from D = D1×D2 to IR3×IR3. A point on a double
surface is called a double point. Furthermore, we define the double normal

nd(u, v, s, t) = (n1,n2) =

(
x1u × x1v

‖x1u × x1v‖
,

x2s × x2t

‖x2s × x2t‖

)
. (2)

where x1u,x1v,x2s,x2t are the first order partials of x1 and x2, respectively. We
consider the 4D Morse function

m(u, v, s, t) = ‖x2(u, v)− x1(s, t)‖
2 (3)

which describes the (squared) Euclidean distance of x1 and x2. Its gradient
grad(m) = (mu,mv,ms,mt) is a 4D vector field on D, its map onto xd gives the
gradient double vector

vd(u, v, s, t) = (v1(u, v, s, t) , v2(u, v, s, t)) (4)

=

(
mu

x1v × n1

‖x1u × x1v‖
+ mv

n1 × x1u

‖x1u × x1v‖
,

ms

x2t × n2

‖x2s × x2t‖
+ mt

n2 × x2t

‖x2s × x2t‖

)
.

vd points into the direction of steepest ascent of the Euclidean distance of x1

and x2. Figure 3a illustrates xd, nd and vd.

The following theorem will provide the foundation of our further treatment
of couple points.
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Fig. 3: a) A double point xd = (x1,x2) with double normal nd = (n1,n2) and
gradient double vector vd = (v1,v2). b)-e) Zero importance couple points: dia-
metric on a sphere, opposite on a cylinder, opposite on parallel planes.

Theorem 1. Given xd, nd, vd as defined in (1) - (4), the following equation
holds.

vd = ( 2((x2 − x1)× n1)× n1 , 2((x1 − x2)× n2)× n2 ) .

The proof is a straightforward exercise in algebra from (1)-(4). Theorem 1 shows
that v is a geometric measure on x1 and x2, i.e., it is independent of the par-
ticular parametrization of x1 and x2. In fact, vd can directly be computed from
xd and nd. Also from Theorem 1 follows directly

Theorem 2. Given xd, nd, vd as defined from (1) - (4), the following three
statements are equivalent:

• xd(u, v, s, t) is a couple point concerning definition 1.
• grad(m) = (0, 0, 0, 0)T .
• vd = ((0, 0, 0)T , (0, 0, 0)T ) = 0d, i.e. xd is a critical (double) point w.r.t. vd.

Let xc = xd(uc, vc, sc, tc) be a couple point. We apply a local reparametriza-
tion of x1 and x2 such that x1u(uc, vc) and x1v(uc, vc) are orthonormalized, and
that x2s(uc, vc) and x2t(uc, vc) are orthonormalized as well. This can easily be
done by locally computing normal and principal directions and using these vec-
tors as the bases of a local coordinate system. Then we can further classify xc

by an eigen-analysis of the Hessian matrix

Hm(u, v, s, t) =




muu muv mus mut

mvu mvv mvs mvt

msu msv mss mst

mtu mtv mts mtt




at (uc, vc, sc, tc). Let λi (i = 1, .., 4) be the eigenvalues of Hm(uc, vc, sc, tc). We
call xc a source iff all eigenvalues of Hm(uc, vc, sc, tc) are positive. In this case,
m has a local minimum at (uc, vc, sc, tc): all double points on xd in a small
neighborhood of xc have Euclidean distance smaller than ‖x2(sc, tc)−x1(uc, vc)‖.
xc is a sink iff all eigenvalues of Hm are negative, i.e., m has a local maximum
at (uc, vc, sc, tc). x

c is a saddle iff it has both positive and negative eigenvalues.
Figure 2c illustrates source, sink, and saddle couple points for 2D curves. There,
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as well as in the remaining figures, we represent a source couple point with a
green line, a sink with a red line, and a saddle with a blue line.

If we consider the couple points of only one surface x (i.e. we consider
C(x,x)), and if x is a closed manifold, then a couple point xc = (xc

1
,xc

2
) ∈ (x,x)

can be further classified as

• direct inside if the line segment xc
1
,xc

2
is completely inside the surface.

• direct outside if the line segment xc
1
,xc

2
is completely outside the surface.

• indirect else.

This distinction is useful for applications which connect couple points by a
straight line which should not have intersections with the surface, e.g., stabiliz-
ing connectors (see Section 5.3). Figure 4 illustrates this for a closed 2D curve.

a) b) c)

Fig. 4: Classification of couple points: a) direct inside, b) direct outside, c) indi-
rect.

As we will see later, there may be a rather large or even infinite number of
couple points in a surface. For instance in 2D curves of constant width, e.g.,
circle or Reuleaux triangle, have infinitely many couple points. To deal with
this, i.e., to discard the unimportant ones, we also need to equip a couple point
with an importance. Couple points which tend to disappear after slight changes
of the surface should have a low importance. Also, couple points which are not
isolated should have a zero importance. Here we assume a sufficiently smooth
surface and use imp(xd) = det(Hm) which fulfills the requirements mentioned
above. Figure 3b-e shows some examples of non-isolated couple points with a zero
importance, i.e., they are degenerate and are not considered here. We remark
that this simple definition of importance is a local property. In particular, this
local importance is not necessarily stable under perturbation of the shape or its
parametrization by adding noise.

Let ei (i = 1, .., 4) be the eigenvectors of Hm(uc, vc, sc, tc). Then ei can be
transformed to double eigenvectors on xd by

eci = ( ai x1u(uc, vc) + bi x1v(uc, vc) , ci x2s(sc, tc) + di x2t(sc, tc) )

for i = 1, .., 4. Note that eci are uniquely defined by xc and the curvature tensors
at x1(uc, vc) and x2(sc, tc). Then we can compute the separation double line
from xc by applying a double stream line integration of vd starting in xc in the
directions ±eci . The integration direction (either forward or backward) is given
by the signs of λi. This way, 8 separation double stream lines are created by a
couple point xc. Figure 5 gives an illustration.
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Fig. 5: A couple point xc = (xc
1
,xc

2
) and its 4 double eigenvectors eci = (ec

1i, e
c
2i).

Each double eigenvector creates two double stream lines by integrating vd. Here,
they end in double points (yellow) when one of the components reaches the
boundary of the surface.

The set of all couple points together with all integrated double separation
curves gives the topological skeleton of the Morse function. Figure 6 shows an
example of a test surface containing 370 couple points. The close-up shows that
the separation double curves cover the surface in a rather dense way.

a) b)

Fig. 6: a) Test surface with 370 couple points. b) All separation double curves.

4 Couple points for triangular meshes

Up to now we treated couple points for smooth surfaces. In this section we
show how to apply the concept to piecewise linear approximations of smooth
surfaces, i.e. to triangular meshes, as this is the standard surface representation
in Computer Graphics. Here, we assume that each vertex is equipped with an
either exact or estimated normal. Then the basic approach is to test each pair
of triangles for couple points: given a triangle t with the vertices p1, p2, p3 and
their assigned normals n1, n2, n3, and given a triangle t̃ with the vertices p̃1,
p̃2, p̃3 and the normals ñ1, ñ2, ñ3, we search for couple points as barycentric
combinations (α, β, γ) and (α̃, β̃, γ̃) by solving the system

(x̃− x)× n = (x̃− x)× ñ = (0, 0, 0)T
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with x = (αp1+β p2+γ p3), x̃ = (α̃ p̃1+ β̃ p̃2+ γ̃ p̃3), n = (αn1+β n2+γ n3),

ñ = (α̃ ñ1 + β̃ ñ2 + γ̃ ñ3), α + β + γ = 1, α̃ + β̃ + γ̃ = 1 for the unknowns

(α, β, γ, α̃, β̃, γ̃). This ends up in finding the roots of a 6th order polynomial if
the intersection line of the two triangle planes is excluded as a solution. This in
turn means that two triangles which do not intersect each other can have up to
6 isolated couple points. Figure 7a gives an illustration.

p1
p2

p3n1

n3

n2

n

x

x
~

n
~

a) b)

e21

e23
e12 e13

e31

e32

r1

r3

r2

p1p2

p3

Fig. 7: a) A couple point between two triangles. b) The planes ǫij .

In order to find the couple points between two triangles, we apply a subdi-
vision approach. We test whether or not t can ”see” t̃, i.e., whether there are
barycentric coordinates (α, β, γ) such that the line x + µn intersects t̃. There-
fore, we introduce the 6 planes ǫij (i, j ∈ {1, 2, 3}, i 6= j) by demanding that
ǫij contains the line ri and the vector ni. Here, r1 is the line through p2 and
p3, r2 passes through p3 and p1, and r3 passes through p1 and p2. Figure 7b
illustrates the planes ǫij . Now the test is done by checking on which side of the
planes the vertices p̃1, p̃2, p̃3 are located. We use the notation opp(p, ǫ,q) if the
points p and q are located on opposite sides of the plane ǫ. Then we check the
following conditions:

• If opp(p̃i, ǫ12,p1) ∧ opp(p̃i, ǫ13,p1) for all i ∈ {1, 2, 3}, then t cannot see t̃.

• If opp(p̃i, ǫ21,p2) ∧ opp(p̃i, ǫ23,p2) for all i ∈ {1, 2, 3}, then t cannot see t̃.

• If opp(p̃i, ǫ31,p3) ∧ opp(p̃i, ǫ32,p3) for all i ∈ {1, 2, 3}, then t cannot see t̃.

If none of these three conditions applies, we assume that t can ”see” t̃. In a
similar way we check whether t̃ can ”see” t. If either t cannot ”see” t̃ or t̃
cannot ”see” t, no couple point exists between t and t̃. Otherwise we subdivide
t and t̃ and apply our test recursively again until the size of t and t̃ is beyond
a certain accuracy threshold.

As presented above, our algorithm for finding all couple points tests every
pair of triangles for couple points and consequently has quadratic complexity
in terms of the number of triangles. At this point, (hierarchical) space partition
techniques can be applied to drastically improve on efficiency. Even simpler is a
partition of normal directions which allows the fast enumeration of all candidates
which eventually ”see” a given triangle.
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Once we have detected all couple points of a mesh, we are left with classifying
them as sources, sinks, and saddles as well as to compute their eigenvalues and
eigenvectors. All we need to have is an estimation of the curvature tensors of
the surfaces at x1c and x2c. Most existing algorithms to estimate the curvature
tensor on a mesh do so per vertex. We follow [25] to estimate the curvature
tensor at every inner point of a triangle as a smooth function over the triangle.
This is done by considering both the linear interpolation of the vertices and the
normals. This allows us to compute a classification of couple points as described
in Section 3.

5 Results and Applications

In this section we demonstrate the extraction of couple points to a number of
test data sets. Then we describe three areas of applications for couple points.

For the camel data set in Figure 8 (consisting of 78,144 triangles) we detected

a) b)

Fig. 8: Camel: a) all direct inside couple points, b) longest direct inside and direct
outside couple points.

2,721 couple points. Figure 8a shows all detected direct inside couple points. In
Figure 8b, we picked two particular couple points: the longest one (i.e., the
one with the largest Euclidean distance between its components) direct outside
(located between ear and toe), and the longest direct inside.

For the feline data set (99,732 triangles) shown in Figure 9, we detected
12,398 couple points. Figure 9a shows all detected direct inside couple points,
Figure 9b does so for all direct outside couple points. Note that we filtered out
couple points which are very close to each other for visualization. Figure 9c
shows the three longest direct outside couple points, the largest direct inside
couple point is shown in Figure 9d.

The ”Freezing Old Woman” data set shown in Figure 10 consists of 9,995
triangles. Figure 10b shows the most important direct inside couple points, while
Figure 10c shows the longest direct inside couple point.
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a) b)

c) d)

Fig. 9: Couple points of feline: a) all direct inside, b) direct outside, c) longest
direct outside, d) longest direct inside.

5.1 Computing the maximal/minimal distance of surfaces

Given two surfaces, the computation of the minimal distance between them
is a relevant problem in computer graphics and can be used for instance for
collision detection or 3D path planning. This problem is far more complicated
than the computation of the shortest distance between a point and a surface.
If the surfaces are given as simple triangular meshes (i.e., without considering
interpolated normals), the shortest distance may appear between two vertices,
between a vertex and an inner point of a triangle, or between inner points of
two edges. In the following, we consider piecewise linear surfaces with piecewise
linear normals, a surface model often used in computer graphics as a compromise
between simplicity and efficiency on the one side and (often visual) smoothness
on the other side. For them, the solution generally appears at inner points of
two triangles.

Theorem 2 states that the shortest distance between two surfaces is given
by a couple point. Hence, to get the shortest distance between two surfaces
x1 and x2, we can use C(x1,x2) and select the couple point with the shortest
Euclidean distance of its components. In a similar way we can compute the
largest distance between two surfaces. Considering a single surface, we can also
compute the shortest and largest distance as the distance of the components of
couple points which are completely inside or outside the surface.
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a) b) c)

Fig. 10: a) Freezing Old Woman, b) most important direct inside couple points,
c) longest direct inside couple point.

Figure 11a shows all detected direct outside couple points between the camel
and the feline model for a certain relative position between them. (Note that
in this picture we filtered out couple points which are very close to each other
in both components.) Among them, the shortest couple point gives the shortest
distance between the surfaces, as shown Figure 1 (middle). Figures 11b and 10c
show the detected largest distance for the feline and the Freezing Old Woman
data set, respectively.

Using our algorithm to compute the shortest distances between surfaces, the
computing time is essentially the time necessary to extract all couple points (see
Section 5). We are not aware of timings of any pre-existing solutions when the
considered meshes contain normals at the vertices.

5.2 Approximations of the shortest geodesic paths between two
points

Given two points x1, x2 on a surface, the computation of the shortest geodesic
path connecting them is a rather expensive process which requests a global
analysis of the surface. Here, couple points provide a way of computing a fast
approximation of the shortest geodesic path. The basic idea is to apply a back-
ward integration of vd starting from the double point (x1,x2). The motivation
behind this approach is that vd points into the direction of steepest ascent of
the Euclidean distance of the components of a double point. Hence, a backward
integration of vd can be considered as a Greedy algorithm to obtain the shortest
path between x1 and x2: at every integration step the integrator tries to reduce
the Euclidean distance as much as possible.

Doing a backward integration of vd starting from (x1,x2), two cases are
possible

• The components of the double points collapse to a single point (xe,xe).
Figure 12a gives an illustration.
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a) b)

Fig. 11: a) all direct outside couple points between feline and camel, b) longest
distance of feline.

• The integration gets stuck in a couple point (x1
c,x2

c). Figure 12b illustrates
this.

In the first case the algorithm stops, and the shortest path is the union of the
two components of the integrated double curve. In the second case we need an
algorithm to ”get out” of the couple point, i.e., we need a shortest path between
x1

c and x2
c. Then the path between x1 and x2 is the union of the components

of the backward integration from (x1,x2) to (x1
c,x2

c) and the shortest path
between x1

c and x2
c. Figure 12c illustrates this.

In order to get the shortest path between the components of a couple point
(x1

c,x2
c), we apply a pre-process to get the shortest paths between the compo-

nents of all detected couple points. We integrate the separating double curves
from each couple point as introduced in Section 3. This way, 8 double stream
lines are emanating from a couple point. Among them, we consider all that col-
lapse into a single point. The shortest path of them is the solution for (x1

c,x2
c).

Figure 13a illustrates an example where 6 of the 8 double stream lines collapse to
a single point, while the remaining two get stuck in couple points. In case that all
8 separation double lines get stuck in couple points (x1i

c,x2i
c), we recursively

compute the shortest path as the union of the components of the integration
double curve from (x1

c,x2
c) to (x1i

c,x2i
c) and the shortest path between x1i

c

and x2i
c. This algorithm is recursively carried out in a breadth first manner until

a path for all couple points is found. Figure 13b gives an illustration.

The resulting data structure of our pre-processing is a distance-weighted
sparse graph where each node represents a couple point. From each node, 8 edges



Couple Points – A Local Approach to Global Surface Analysis 13

a) b) c)
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Fig. 12: a) Backward integration of vd starting from (x1,x2): the components of
the double points collapse to a single point xe. b) Integration of vd gets stuck
in a couple point (x1

c,x2
c). c) The shortest path is completed by adding the

shortest path between x1
c and x2

c.

a) b)

x1

x2

x1

x2

x1i
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c

c

c c

c

c

Fig. 13: a) The 8 separation double lines starting from a couple point (x1
c,x2

c)
(blue): 6 collapse to single points. b) All separation lines from (x1

c,x2
c) (green)

get stuck in a couple point: the shortest path is computed as the union of the
components of the integrated double line from (x1

c,x2
c) to (x1i

c,x2i
c) and the

shortest path between x1i
c and x2i

c.

are leaving which represent the integrated double separation lines. These edges
end either in the same node (in case that the integrated double line collapses
into a point) or in another node (representing the couple point in which the
integration gets stuck). If each edge is assigned with the path length of the
corresponding double stream line, the problem of finding a shortest path between
(x1

c and (x2
c is equivalent to finding a short loop in the graph. This way, we

found solutions for all couple points for very few iteration steps.
Once the pre-process for a surface is done, the algorithm to detect a shortest

path for a pair of surface points has just the cost of a numerical double stream line
integration. Obviously, the cost of this depends on step size and accuracy of the
chosen integration technique. Nevertheless it has a linear worst case complexity
and is easily possible at interactive frame rates on standard personal computers.

Figure 14 shows two examples of computing the approximation of the shortest
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Fig. 14: Fast approximation of the shortest path between two surface points.

path between two surface points (yellow). In both examples, the backward inte-
gration of vd collapsed into a single point without touching a couple point. Fig-
ure 1 (left) shows an example where the found shortest path is passing through
5 couple points.

Generally, our approach to get a shortest path between two surface points
shares the advantages and disadvantages of all Greedy algorithms. It is fast,
but is always possible to construct extreme examples in which the algorithm
produces solutions far way from the globally optimal one. Figure 15 compares

a) b)

Fig. 15: Comparison between real geodesics (white lines) and our solution (yellow
lines).

examples of our solutions (yellow lines) with the perfect geodesics (white lines).
Figure 15a shows the coincidence between the lines while a certain difference
can be observed in Figure 15b. However, the advantage of our approach is that
it computes a path between two surface points only by a univariate numerical
integration where estimators of real geodesics between two points have a higher
complexity.
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5.3 Computing stabilizing connectors between parts of a surface

Quite a number of classical statues and sculptures have lost parts because they
got broken (see Figure 16a for an example). To prevent these accidents for in-

a) c)b)

Fig. 16: a) A (real) statue with broken parts. b) A stabilizing connector for a real
statue. c) A candidate couple point to be a stabilizing connector: the Euclidean
distance between the points is rather short in comparison to the shortest path
on the surface.

stance during a transportation, stabilizing connectors can be included. These
are static sticks which are connected to certain parts of the surface to prevent
the breaking of parts. Figure 16b illustrates an example. Although the stability
of a surface is a well-studied feature [6, 16], couple points provide a heuristic
approach to find optimal stabilizing connectors. An “optimal” stabilizing con-
nector should be a compromise between size, visual appearance and impact. It
should be as small as possible in order to not disturb the visual impression of the
sculpture, but it should stabilize the sculpture as much as possible. We believe
that direct outside couple points are good candidates for stabilizing connectors
because they touch the surface parallel to the normals and hence have a maximal
effect of the stabilizing forces onto the surface.

Our approach to find the optimal couple points to be used as stabilizing
connectors is to consider the ratio between ‖x2

c − x1
c‖ and the length of the

shortest path between x1
c and x2

c for all outside direct couple points (x2
c,x1

c).
The smaller this ratio, the better the couple point is suited to be a stabilizing
connector. A small value of ‖x2

c−x1
c‖ ensures a small disturbance in the visual

impression, while a relatively long path between x1
c and x2

c gives a good impact
of the connector. As an example, consider the components of an outside direct
couple point (x2

c,x1
c) to be located on the two legs of a human statue where

the position of the legs is rather parallel. Then the Euclidean distance between
x1

c and x2
c is rather small in comparison to the shortest path between x1

c and
x2

c, hence the couple point is a good candidate for being a stabilizing connector.
Figure 16c gives an illustration.

Figure 17 shows the 7 best suited couple points to be stabilizing connectors
for the camel data set and the best 11 connectors for the feline data set, a front
view is shown in Figure 1 (right).
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Fig. 17: Best couple points to serve as stabilizing connectors.

6 Conclusions

In this paper we have made the following contributions: We introduced the con-
cept of couple points as a new global feature on surfaces. We applied local feature
extracting techniques, namely a Morse theoretic approach on a 4D scalar field, to
extract and classify couple points. We proposed a recursive algorithm to extract
couple points for triangular meshes where the vertices are equipped with a nor-
mal. We applied couple points to compute the minimal and maximal distance
between surfaces. We applied couple points to compute a fast approximation
of the shortest geodesic path between two surface points. Finally, we proposed
stabilizing connectors of a surface as appropriate couple points.

Nevertheless there is a number of open problems concerning couple points
which are subject to future research. An interesting direction would be persis-
tence of couple points under surface perturbation or surface deformation. For
instance, we do not yet have control over the changes of couple points when the
surfaces are continuously moved or deformed. In this case, couple points may
drift on the surfaces, and they may appear and disappear at certain events. A
careful study of these effects may make couple points applicable also to dynamic
surfaces.
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terrogation. In: de Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structur-
ing, chap. 1, pp. 1–52. Mathematics and Visualization, Springer, Berlin, Germany
(2008)

12. Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully
automatic similarity estimation of 3D shapes. In: Proc. SIGGRAPH. pp. 203–212
(2001)

13. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. In: Proc. SIG-
GRAPH. pp. 284–293 (2004)

14. Kuiper, N. H.: Double normals of convex bodies, Israel J. Math. 2, 71-80 (1964)
15. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl.

Acad. Sci. USA 95(15), 8431–8435 (1998)
16. Minagawa, T., Rado, R.: On the infinitesimal rigidity of surfaces. Osaka Math. J.

4, 241–285 (1952)
17. Mitchell, J.: Geometric shortest paths and network optimization. In: Sack, J.R.,

Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 633–701. Elsevier
(1998)

18. Ni, X., Garland, M., Hart, J.: Fair morse functions for extracting the topological
structure of a surface mesh. In: Proc. SIGGRAPH. pp. 613–622 (2004)

19. Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM
Computing Surveys 34(2) (2001)

20. Pham-Trong, V., Biard, L., Szafran, N.: Pseudo-geodesics on three-dimensional
surfaces and pseudo-geodesic meshes. Numerical Algorithms 26(4), 305–315 (2001)

21. Polthier, K., Schmies, M.: Straightest geodesics on polyhedral surfaces. In: Hege,
H.C., Polthier, K. (eds.) Mathematical Visualization, pp. 135–150. Springer Verlag,
Heidelberg (1998)

22. Rusinkiewicz, S.: Estimating curvatures and their derivatives on triangle meshes.
In: 3DPVT. pp. 486–493 (2004)

23. Sheeny, D., Armstrong, C., Robinson, D.: Shape description by medial axis con-
struction. IEEE Transactions on Visualization and Computer Graphics 2, 62–72
(1996)

24. Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H.: Fast exact and
approximate geodesics on meshes. ACM Transactions on Graphics 24(3), 553–560
(2005)

25. Theisel, H., Rössl, C., Zayer, R., Seidel, H.P.: Normal based estimation of the
curvature tensor for triangular meshes. In: Proc. Pacific Graphics. pp. 288 – 297
(2004)

26. Xin, S.Q., Wang, G.J.: Improving Chen and Han’s algorithm on the discrete
geodesic problem. ACM Transactions on Graphics 28(4), 104:1–104:8 (Aug 2009)


