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Abstract. We introduce a novel continuous surface deformation method
which relies on a time-dependent vector field over a triangular mesh. For
every time step the piecewise linear vector field is obtained by least-
squares minimization of the metric distortion induced by integration
subject to boundary conditions. As an integral part of the approach,
we introduce a new measure to describe local metric distortion which
is invariant to the particular triangulation of the surface and which can
incorporate smoothness of the field. Neither of these properties are met
by previous work. A GPU implementation of the proposed algorithm
enables fast deformations. The resulting deformations have lower metric
distortions than deformations by existing (linear or non-linear) methods.
This is shown for a number of representative test data sets.
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1 Introduction

Shape deformations constitute a standard problem in modeling and computer
graphics. A variety of approaches have been proposed in the recent decade, and
shape deformation is still an active area of research. A good approach to defor-
mations should be intuitive, visually convincing, geometrically or/and physically
sound, and reasonably fast.

We consider shapes represented as triangle meshes. Most current approaches
define deformations as a minimization problem. Given certain boundary condi-
tions, the unknown vertex positions have to be determined. This yields a linear
or non-linear optimization problem depending on the measure to be minimized.
Proceeding this way, only the final positions of the vertices are computed without
considering the deformation path leading to the final state. We call this kind of
deformations discrete deformations. In contrast, continuous deformations inte-
grate vertex positions along smooth vector fields. Here, the boundary conditions
of the deformation are paths of parts of the shape. In this sense, we are aware
of only two approaches to continuous deformations so far: [14] and its exten-
sion [15] which applies divergence-free vector fields for volume preserving shape
deformation, and [18] which considers the deformations in a shape space.

Various measures have been proposed for minimization in discrete shape de-
formations. These measures typically reflect or simulate physical properties like
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Fig. 1: Optimization Problem at three Time Steps of the Integration. The small
handle region is marked yellow while the blue border corresponds to the fixed
surface part. For every integration step, the current vertex positions and black
vectors are given, while the gray vectors are obtained by solving a sparse linear
system.

bending energies which may be simplified or linearized. Only recently, minimiza-
tion of metric distortion has been considered [18, 17].

In this paper we present a new approach to continuous deformations which
minimizes distortion of the surface and tries to preserve isometry. We define the
deformation continuously over time, i.e., as a vector field which is determined in
every time step as the result of a linear problem. The arising system matrices are
sparse and can be solved reliably and efficiently supported by the GPU, which
renders our approach reasonably fast. Figure 1 illustrates the main idea of our
approach: following the standard deformation metaphor [4, 24], we define regions
of full and zero deformation of the shape. For regions of full deformation, the
deformation is given as parametric curves. Then in every time step a piecewise
linear vector field is constructed such that metric distortion is minimized un-
der integration. Boundary conditions are defined by the tangent vectors of the
parametric curves describing the full deformation.

In summary, the main contributions of this work are: (1) design of a new dis-
crete isometry measure which is invariant to surface tessellation and which ex-
tends naturally to incorporate smoothness. (2) Definition of continuous, isometry
preserving shape deformations which are constrained by trajectories of surface
regions. The whole approach is completely geometry-driven.

The remainder of the paper is organized as follows. Section 2 reviews related
work. Section 3 introduces our approach and defines all measures while Section 4
discusses how the theoretic concepts are applied and implemented. Results are
presented in Section 5 followed by a discussion of the method in Section 6 and
final conclusions (Section 7).

2 Related work

There is a vast amount of literature on shape deformation, a proper review is far
beyond the scope of this section. Instead, we point to the recent survey of Botsch
and Sorkine [6]: they discuss and compare the most important classes of explicit
surface deformation methods. In fact, we use their reference deformations as
benchmarks. All reviewed methods implement discrete deformations which are
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completely determined by boundary constraints, i.e., the placement of surface
regions, fixed or handle regions, in 3-space. Deformation of the surface is then
modeled in one of several ways:

• as a variational problem minimizing an energy functional which penalizes
certain bending energies (see, e.g., [4]),

• as reconstruction from any kind of differential coordinates (see, e.g., [19]),
• as a projection or Poisson reconstruction after application of a ”transfor-

mation field” to individual triangles thus over-determining vertex positions
(see, e.g., [27]), or

• as simulation of forces to rigid and loosely coupled prism elements enveloping
the surface [5].

Several methods are closely related, and they all share the goals of feature preser-
vation and establishing smooth transitions towards deformed regions. All of these
methods (except [5]) rely on the factorization of few or even only one single linear
systems, a fact that renders these methods interactive. In particular, movement
of handles requires only back-substitution for solving the system.

Furthermore, there is a variety of methods which determine a piecewise defor-
mation where individual pieces are close to rigid transformations, i.e, they ought
to be as rigid as possible. We refer to recent work by Sumner et al. [25] (and
the references therein): here, a free-form deformation is determined based on
a user provided “deformation graph”, which defines the piecewise deformation.
A non-linear minimization determines the degrees of freedom for the individual
transformation pieces associated with the nodes. We note that our goal is not to
obtain an as-rigid-as possible deformation but to stay as-isometric-as possible,
and we refer to [18] for a more elaborate discussion. Furthermore our approach
does not define a space warp but an explicit surface deformation (evaluation of
our guiding vector fields is meaningful only for surface points), and we explicitly
include the surface metric. Of course this review cannot be complete as there
is a vast amount of literature on shape deformation. Among other non-linear
methods we mention [3, 16, 26] as recent examples.

For all the above mentioned methods, deformation remains a discrete process:
it is solely the rest position of the handles that determines the result but not
their particular trajectory.

In contrast, von Funck et al. [14] introduce an approach based on integration
of a surface along a time-dependent vector field. Their goal is volume preserving
deformations. This is achieved in an elegant way: the guiding vector fields are
constructed to show zero divergence. Remarkable in the context of our work is
that this constitutes a continuous deformation which does depend on the partic-
ular trajectories of the handles. (Note that otherwise this method is fundamen-
tally different to ours.) The method was extended in [15] by the introduction
of deformation paths. An earlier approach [2] related to this does not rely on
continuous vector fields but instead discretizes the deformation.

Kilian et al. [18] regard continuous deformations in a shape space: they solve
a boundary value problem in order to find a time-dependent deformation be-
tween two poses of the same shape. They advocate to determine optimal de-



4 Janick Martinez Esturo, Christian Rössl, and Holger Theisel

(a) (b) (c)

Fig. 2: Deformation examples. (a) Perfectly isometric deformation of developable
plane. (b) Twisting deformation of the head of the cow and a strong twist of
a bar by 280◦ which is not achievable by discrete deformations. (c) Continuous
deformations using multiple handles.

formations by isometry preservation rather than a more traditional as-rigid-as
possible [1] criterion. Then a discrete version of Killing fields [8] characterizes
time-dependent deformation vector fields. While the focus is on boundary value
problems and their solution by a space-time multigrid approach, initial value
problems are discussed briefly. In both cases, the approach is not interactive.

We consider the latter deformation approaches by Funck et al. [14] and Kil-
ian et al. [18] as continuous deformation methods. Discrete methods mentioned
above rely on the minimization of certain (potentially linearized) energy func-
tionals which often results in solving associated Euler-Lagrange equations char-
acterizing an equilibrium state. While this is clearly different from our setting,
it is also obvious that such discrete methods which are not modeled by a time-
dependent flow can easily be modified such that a single deformation is broken
into multiple steps defined, e.g., along a path (Section 6 shows an experiment).
In fact, this may be regarded as a simple approach to emulating parametrization-
independent, non-linear operators [6].

Isometry preserving deformations have been studied extensively in differential
geometry (see, e.g., [8]) and mathematics in general: Efimow [12] theoretically
investigated infinitesimal first order and higher order deformations. In this work
we consider the first order case for piecewise linear discrete surfaces.

Finally, we remark that there are scenarios where physical objects including
thin shells or cloth are modeled and shapes (or solids) obtain measured or syn-
thesized material attributes. In a series of papers inspired by physically-based
settings, Qin et al.[22, 10] consider time-dependent surfaces using a dynamic
FEM formulation for shape modeling. Emphasis is on the design of smooth sur-
faces, the process is governed by a mass-spring system. For recent work on cloth
simulation in the context of developable surfaces we refer to [13]. Generally such
deformations must be physically correct or at least plausible. While this is far
from our goals we remark that such simulations may be seen as continuous pro-
cesses, see, e.g., the survey of Nealen et al.[20].
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3 Minimum distortion shape integration

Our method is based on penalizing metric distortion when integrating vertex
positions along a piecewise linear vector field. In this section we describe our
approach in detail. We start with the derivation of the error measure for a single
triangle. Contributions of each triangle are accumulated on the entire shape.
Finally, we show how the concept can be extended naturally to incorporate
smoothness of the resulting vector fields.

3.1 Error measure on a single triangle

Reviewing the situation for a single triangle T is sufficient to explain the error
measure. We consider a triangle with vertex positions x0,x1,x2 ∈ IR3 and asso-
ciated vectors v0,v1,v2 ∈ IR3. The triangle surface x and the vector field v are
obtained by linear interpolation as

xT (u, v) = u x0 + v x1 + (1− u− v) x2

vT (u, v) = u v0 + v v1 + (1− u− v) v2.

The subsequent derivation is motivated by the fact that integrating perfectly
rigid vector fields yields zero distortion. Obviously they won’t yield a reasonable
deformation either. However, local rigid fields can be easily constructed and
serve as a reference: the closer vT is to a rigid field, the more isometric the
deformation.

We consider a 3D vector field r(x) describing a rigid vector field, i.e., it can
be written as r(x) = rt+(rr×x). Here, rt and rr describe the translational part
and the rotation axis, respectively. Note that even though r is defined everywhere
in IR3, we evaluate it only on the triangle. We define the error eT as squared
difference of r and v integrated over the triangle T :

eT (x,v, r) =

∫ 1

0

∫ 1−v

0

||v(u, v)− r(x(u, v)) ||2 du dv . (1)

This can be expressed in closed form as

eT (x,v, r) =
1

6

∑
(i,j)∈{(0,1),(1,2),(2,0)}

||vij − r(xij)||2

with xij = 1
2 (xi + xj) and vij = 1

2 (vi + vj).
Given x, our goal is to compute the best fitting rigid vector field r̂(x,v) as

a function of v by minimizing eT (x,v, r) for all rigid fields r:

r̂(x,v) = argmin
r

eT (x,v, r) . (2)

This is a linear least-squares problem in the six coefficients of r (see also Sec-
tion 4.2). Its solution depends on both, the positions xi and vectors vi, i = 0, 1, 2.

Finally, we express metric distortion of x under instantaneous motion along
v as

dT (x,v) = eT (x,v, r̂(x,v)) . (3)
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3.2 Properties of d

The measure dT is invariant under adding a rigid field to v: let r̂ be the best
fitting rigid field for x and v, and let p(x) be another arbitrary rigid vector
field. Then the best fitting rigid field for x and the modified vectors v′i = (vi +
p(xi)), i = 0, 1, 2, is r̂ + p. Furthermore, dT (x,v) = dT (x,v′).

The computation of r̂ is robust as long as the triangle is not degenerated,
i.e., as long as the triangle area and the edge length ratios are bounded from
below.

We emphasize that by construction dT (x,v) measures metric distortion: iso-
metric distortions of developable surfaces (see Figure 2a) indeed yield zero dis-
tortion although the deformation is not rigid. In particular this differs from
as-rigid-as possible formulations (see [18] for a comparative discussion).

In the literature [18, 11], (discrete) metric distortion of a triangle under inte-
gration of its vertices is usually described as

d̄T (x,v) = h20+h21+h22 with hk = r>k (vπk+1
−vπk

), rk = (xπk+1
−xπk

), (4)

and πk = (k + 1) mod 3. Then the summation of d̄T over all triangles is the
global measure to be minimized. Our measure is related and compatible to this
in the sense that dT (x,v) = (h0, h1, h2) S (h0, h1, h2)>. Let rij = r>i rj and
α = 4 area(T )2. Then S is a symmetric 3 × 3 matrix which depends only on x
and not on v:

S =
−1

144α (r12 + r20 + r01)

 3 r212 + 4α 6 r12 r20 − 4α 6 r20 r01 − 4α
6 r20 r12 − 4α 3 r220 + 4α 6 r01 r12 − 4α
6 r01 r20 − 4α 6 r12 r01 − 4α 3 r201 + 4α

 .
Hence, generally no edge or area weighting–scheme exists which turns d̄T (x,v)
into dT (x,v), since S is generally not diagonal. In contrast to d̄T (x,v) and
roughly speaking, our measure dT (x,v) also incorporate all mixed products
hihj , i 6= j.

The integration of quantities over triangles is essential to the design of our
measure: this way, dT (x,v) will be invariant to subdivision of triangles or gen-
erally independent of parametrization/tessellation. Figure 3a illustrates this by
a simple example and compares dT (x,v) to d̄T (x,v): we prescribe a vector field
and apply the measure for different tessellations of the same shape, a unit sphere.
Then tessellation-independence requires low variance of measured values. Geo-
metrically the absolute values are meaningless for this experiment. However, they
can physically be interpreted to be the applied membrane strain since isometric
deformations are a geometric approximation of real-life, thin surfaces deforming
with a very high Young’s modulus [20]. Further experiments and a compari-
son are shown in Figures 6 and 3b (see Section 6). Tessellation-independence is
generally an important requirement for many algorithms. It is essential for mean-
ingful deformations also because coherence for time–dependent deformations is
improved.
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dT (x,v)
d̄T (x,v)

(a) Tesselation Dependence (b) Measure Stability

Fig. 3: Measure Comparison. (a) Different unit sphere tesselations and values of
measures dT (x,v) and d̄T (x,v) for the normal field. Important is the variance
of the measure for different tessellations of the same shape which should be low.
(b) The irregularly tessellated test surface (1–2) is Euler-integrated three steps
by minimizing d̄T (x,v) (3–5), and by minimizing dT (x,v) (6–8).

3.3 Error measure on the entire surface

The shape S is given as a triangle meshM = (V, E , T ) with vertices V, directed
edges E , and triangles T . The embedding of the surface x in 3-space is defined
by vertex positions xi ∈ IR3, furthermore the piecewise linear vector field v is
defined by vectors vi, i = 1, . . . , |V|.

We define the global metric distortion as

d1(x,v) =
∑

(i,j,k)∈T

dT ([xi,xj ,xk], [vi,vj ,vk]) (5)

With (3) it is evident that v is a Killing field [8, 12, 18] of x iff d1(x,v) = 0. This
also corresponds to intuition: if v is a Killing field, the best fitting rigid field for
every triangle will be identical to v at each triangle, yielding d1(x,v) = 0.

An error measure which is based solely on the preservation of isometry is ob-
viously not sufficient to determine meaningful surface deformation: for instance,
foldings yield perfect isometry whereas for shape deformation they are consid-
ered unwanted artifacts. The measure d1 does not exclude, e.g., foldings of a
developable surface (see, e.g., [17]). Consequently, we require an additional mea-
sure which penalizes discontinuous deformation and enforces smoothness of the
vector field v.

A suitable measure that fits our setting should be derived from existing
quantities. We take advantage of the fact that the best fitting rigid vector fields r̂
are defined not only on respective triangles but everywhere in IR3. In particular,
we can evaluate r̂ for a certain triangle T on an adjacent triangle T ′.

Let triangles T = (r, s, t) and T ′ = (s, r, t′) be adjacent with vertex positions
x`, and associated vectors v`, ` ∈ {r, s, t, t′}. Furthermore, let r̂ and r̂′ be the
best fitting rigid fields on T and T ′. Then, loosely spoken, r̂ and vT ′ should not
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differ too much for a meaningful deformation. We formalize this by applying r̂
to T ′ (and r̂′ to T respectively). We obtain

fT,T ′(x,v) =

∫ 1

0

∫ 1−v

0

||vT ′(u, v)− r̂(xT ′(u, v)) ||2 du dv

where xT ′(u, v) and vT ′(u, v) denote the linear interpolation as before but on
triangle T ′ whereas r̂ is the best fitting rigid field on T . This can be expressed
in closed form

fT,T ′(x,v) =
1

6

∑
(m,n)∈{(r,s),(s,t′),(t′,r)}

||vmn − r̂(xmn)||2

with xmn = 1
2 (xm + xn) and vmn = 1

2 (vm + vn). With the measure fT,T ′ on
single triangles we define the global measure d2 on the entire shape as

d2(x,v) =
∑

T,T ′∈T adjacent

fT,T ′(x,v) .

In general fT,T ′(x,v) 6= fT ′,T (x,v) which both have to be added in d2. Botsch
et al. [5] use a similar principle to match transformations of incident prisms.

With the derivation of d1 and d2 we finally define the error measure which
will be minimized in our approach as

d(x,v) = (1− ω) d1(x,v) + ω d2(x,v) (6)

for a small weight ω > 0 (see below).
We motivated the second measure d2 by the fact that isometry does not

always convey enough information for meaningful deformations. We remark that
d2 is required for another reason: in special cases, minimizing d1 yields a singular
or ill-conditioned operator, and d2 acts as a regularization term. For instance,
a planar surface constitutes this special case. Of course, then it applies only to
the first integration step – after that the surface is probably no longer planar.
However, to ensure robustness of our approach in any possible situation we
require ω > 0.

Our experiments show that a rather high value in (0, 1] can be chosen for ω
without spoiling minimization of distortion, i.e., the effect of d1. The reason for
this is that the definition of d2 contains essentials of d1 just with the difference
of extrapolating the rigid fields. We close this section with two final remarks:
First, the errors d1 and d2 are compatible in a sense that comparable quantities
are measured. Second, there is a bias in the weighting as summation is over |T |
triangles for d1 and over |E| adjacent triangles for d2. From the latter relation
Euler’s formula yields ω = 1

3 for an even weighting.

3.4 Shape integration

Given the shape with vertex positions x, our goal is to find a piecewise lin-
ear vector field v̂ that minimizes the error functional d(x,v). This vector field
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minimizes metric distortion under integration of x due to the definition of d1.
Additionally, the contribution of d2 to d accounts for smoothness of v̂.

Our approach to isometry preserving shape deformation assumes time-de-
pendent shape x(t) and vector field v̂(x, t) such that

∂

∂t
x(t) = v̂(x, t) .

In every time step t (or generally every point t where the vector field is evaluated)
we determine v̂(t) for x(t). The associated optimization problem is linear in the
unknowns vi, i = 1 . . . , |V|.

4 Implementation

In this section we discuss the implementation of each stage of our approach.
These are firstly, the specification of deformations, secondly, the GPU based
linear framework for finding vector fields that minimize our error measures in
every time step, and finally, the numerical integration of the shape over time.

4.1 Defining deformations

Deformations are defined by certain constraints. In our case these are constraints
on the vector field v(x, t), i.e., for a subset of vertices, we prescribe the associated
time-dependent vectors. This way we implement the standard handle metaphor
for shape modeling: the user selects surface regions which are either fixed, de-
formable, or displaced by a handle. In fixed regions, the vector field is constant
zero at each time step. The deformable regions define the free parameters, there
the vector field is determined by minimization. In handle regions, vertices are
displaced over time along smooth curves. The tangents of these curves define
the vector field at each handle and hence determine the movement of handle
vertices.

From the user’s point of view, fixed and handle regions are selected. There
is no restriction on the number of such regions or their connectivity. Then she
prescribes arbitrary parametric guidance curves for moving the handles. Note
that a single curve prescribes the rigid motion of a full handle region: every
handle vertex is associated with the curves’ tangent.

Such guidance curves can be designed easily and intuitively [15]. Indeed, our
approach is even more general in a sense that we are not restricted to parametric
curves for specifying constraints: any piecewise linear time-dependent vector field
can be applied to prescribe motion of handles. In particular, twisting and bending
of the shape can be modeled easily.

4.2 Minimizing error measures

Error measures are quadratic forms in the unknown vector field v ∈ IR3 |V|. Our
goal is to minimize an expression

d(x,v) = v> [(1− ω) D1 + ωD2] v .
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Fig. 4: Computational Pipeline. For each triangle on the GPU we compute the
parameter mapping matrices Ri which are used to determine the gradient com-
ponents of the distortion and smoothness measures d1 and d2. These coefficients
are combined in the final sparse system matrix which is solved by the CPU using
a precomputed symbolic factorization yielding the optimal vector field.

where D1 and D2 implement error measures d1 and d2, respectively. The setup of
the corresponding linear system A(x) is attended by considerable computational
costs but is inherent parallizable. To guarantee fast execution times we opt for
the combined GPU and CPU approach shown in Figure 4.

Best rigid fields. Both measures d1 and d2 depend on the evaluation of the

best fitting rigid fields r̂i (parameterized by pi =
(
r>t,i, r

>
r,i

)> ∈ IR6) induced

by the linear vector fields vi =
(
v>r ,v

>
s ,v

>
t

)> ∈ IR9 applied to single triangles
Ti = (r, s, t) ∈ T . For each triangle i we therefore find the linear maps Ri vi =
pi, Ri ∈ IR6×9 relating linear and best rigid fields in the following way:

Switching to matrix notation (1) is expressed as eTi
= ||L>i (v − Ei pi)||2.

Here Ei ∈ IR9×6 evaluates r̂ at the triangle vertices and L>i is the Cholesky
factor of the matrix Ni = Li L

>
i ∈ IR9×9 performing the integration along the

triangle and which is defined by Ni, lm =


area(Ti)

6 l = m
area(Ti)

12 (l −m) mod 3 = 0

0 else

. Then

(2) is solved for Ri by solving the linear system corresponding to ∇pi
eTi

= 0
yielding

Ri = (E>i Ni Ei)
−1 E>i Ni .

We perform these independent computations in a parallized and numerically
stable way for each triangle on the GPU by computing one dense Cholesky
factorizations of E>i Ni Ei and nine corresponding back-substitutions.

Distortion and smoothness gradients. For each triangle i its gradient components
Di

1 ∈ IR9×9 contributing to D1 are found by the evaluation of the gradient of
dTi

= ||L>i (I−Ei Ri) vi)||2 giving

Di
1 = 2 (I−R>i E>i ) Ni (I−Ei Ri) .

Similarly we find Dk
2 ∈ IR12×12 contributing to D2 for each neighboring

pair k of triangles Ti and Tj = (s, r, t′) by the evaluation of the gradient of
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fTi,Tj = ||L>j (I′ −Ej Ri Pk) vij ||2, where I′ =
[
I,0
]

and with a permutation

matrix Pk ∈ IR9×12 selecting the vector vi corresponding to Ti out of vij =(
v>j v>t′

)> ∈ IR12 in the correct order. Computed in parallel on the GPU this
yields

Dk
2 = 2 (I′> −P>k R>i E>j ) Nj (I′ −Ej Ri Pk) .

Linear systems. In the last step the final sparse symmetric linear system A
is constructed as half of the Hessian of d in parallel by a weighted segmented
reduction operation [23]. The non-zero entries are computed of all Di

1 and Dk
2

by weighted sums according to

Aef =
1

2

∂2d

∂ve∂vf
=

1

2
((1− ω)D1,ef + ωD2,ef ) .

We minimize d(x,v) = v>Av on the CPU subject to boundary conditions (see
Section 4.1). A is symmetric positive definite and sparse with about 1.5% non-
zero entries. The linear systems are solved by state-of-the-art direct solvers,
namely a sparse Cholesky factorization in combination with an approximate
minimum degree preordering to reduce fill-in [9]. We exploit the fact that the
structure of the linear system stays fixed in consecutive minimization steps,
which allows the precomputation of a symbolic factorization that strongly accel-
erates the optimization. Experiments reveal that the direct CPU solver is two
orders of magnitude faster than a GPU based sparse preconditioned conjugate
gradient solver.

4.3 Numerical integration

In order to compute the deformation we require integration of vertex positions,
i.e., we have to find the solution to an initial valued ordinary differential equa-
tion. Straightforward Euler integration yields visually pleasing results even for
moderate time-steps. However, the lack of accuracy of this scheme would spoil
our overall approach and render this scheme unacceptable. Instead we rely on
higher order schemes.

For numerical integration we prefer a third order multistep predictor-corrector
method with adaptive step size control: in contrast to single-step methods such
as Runge-Kutta, the Adams-Bashforth-Moulton scheme (see, e.g., [21]) takes ad-
vantage of results from previous integrations steps. The initialization is provided
by few fourth order Runge-Kutta steps. The main motivation for choosing this
method is the relatively fewer number of expensive evaluations of the vector field
required compared to single-step methods when assuming similar approximation
errors. This choice was justified by experiments.

5 Analysis and results

In order to analyze our approach, we apply it to the four standard deformation
problems defined by Botsch and Sorkine [6]. In particular, we compare our defor-
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Fig. 5: Weighting of Error Measures. Smaller weights ω lead to small distortion
(see table 1) but may produce deformation artifacts if the boundary conditions
do not allow for an isometric deformation (d). Slightly higher ω values solve the
problem (c).

mations with the (discrete) deformations described in [5] (PriMo), [7] (Thin-
Shells), [27] (GradientEd), [24] (LaplacianEd), and [19] (RotationInv).
The results are summarized in Table 1. It first shows that our deformations look
visually convincing (the images in Table 1 show the original and the deformed
shape by using our method with ω = 1

3 for each of the four benchmark shapes).

In order to do an additional quantitative comparison, we compute an estima-
tion of the final metric distortion by summing up the squared differences of the
edge lengths in the original and deformed mesh (metricErr). In a similar way we
compute the area distortion by considering the squared area difference over all
triangles (areaErr), and the angular distortion by considering the squared angle
differences over all triangles (angleErr). These values are measured between orig-
inal and deformed shape for the reference deformation, and between original and
final time step deformation for our method. For our method, we use four different
values of ω. Since the absolute values of the distortion do not have a geomet-
ric meaning (because they depend on a particular triangulation), we normalized
them by the distortion of our method with ω = 1

3 . (A number above 100% in
the table indicates a higher distortion than for our method with ω = 1

3 .) For all
examples, our technique shows significantly smaller metric distortion than any of
the compared discrete deformation techniques. In fact, our continuous approach
achieves even lower errors than the discrete, yet non-linear PriMo approach.
Moreover, the same statement holds for most of the techniques concerning area
and angular distortion. Also note that our approach performs especially well on
the bumpplane problem, since only at the small junctions of the bumps to the
underlying plane minimal distortions are introduced and the remaining surface
deforms isometrically with correct detail orientation.

Timings were measured on a 2.6GHz AMD Opteron system with 8GB RAM
and a NVIDIA GTX 280 running CUDA. The number of required integration
steps for each problem was 13 (cactus), 44 (bar), 46 (cylinder) and 76 (bump
plane), and the number of vector–field evaluations was roughly twice as many.
The first three models can be modified at interactive rates. However, performance
is impaired for the very large bump plane model. Here the sparse solver becomes
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(a) (b)

Fig. 6: Mesh Resolution Independence. Pulling the handle vertices up vertically
produces a smooth deformation (b) independent of the inhomogeneous mesh
resolution (a).

the bottleneck of the optimization due to the size of the arising linear system,
which was not the case for all other examples in this paper.

Further examples of our approach are in Figures 2 and 8. Figure 2a shows
a perfectly isometry-preserving deformation of a developable surface. Figure 2b
(top) shows a twisting deformation of the head of a cow model. There, the
body leans forward to compensate metric distortion. Figure 2c shows that the
deformations can contain different handle paths: the front legs of the animals
were moved in different directions, yielding realistic deformations. In Figure 8
a beetle car model is deformed in four antipodal directions giving four rather
different deformation results.

The impact of the variation of the weight ω is illustrated in Figure 5 (error
values are listed in Table 1). It shows that too small weights ω in (d) can lead to
artifacts when deformations can not be perfectly isometric and metric distortion
minimization is enforced at the expense of vector-field smoothness in (6).

6 Discussion

In this section we discuss several aspects of our approach.

Isometry Measure. For our approach, it was necessary to develop a new discrete
measure of metric distortion of a vector field acting on the surface. The usual
approach (4) as used in [18, 11] fails because of two reasons: first, it does not
consider the shape and size of the triangles. Figure 3b gives an illustration of
this: for this experiment, the surface z(x, y) = 1

2 (1 + x)(1− x)(1 + y)(1− y) was
sampled over the interval [−1, 1]× [−1, 1] as shown in Figure 3b (1–2). Note that
an irregular tessellation was chosen. The deformation was defined by keeping the
boundary constant and translating the (yellow) region in the direction of the z-
axis. Figures 3b (3–5) show three steps of an Euler integration by minimizing
d̄(x,v), while Figure 3b (6–8) shows the same steps by minimizing d(x,v) with
ω = 0. Even this very small example clearly shows that the measure d̄(x,v) does
not yield the desired results. Note that this is not due to missing regulariza-
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Table 1: Experimental Results. The tables summarizes the final errors of the
benchmark problems. Measures are given relative to the absolute values of the
shape integrated with parameter ω = 1

3 . The images illustrate the deformation
results of our approach using this parameter.

tion (the initial surface is not planar), the linear operators are sufficiently well
conditioned.

The second reason for developing the new measure is that it offers a simple
method to incorporate the smoothness of the surface, i.e., to prevent appearance
or disappearance of sharp edges during the deformation. While we do not see a
straightforward way to extend (4) in this direction, our measure can easily deal
with it as shown in Section 3.3.

We conclude this aspect by visualization tessellation-independence of our
deformation method for a simple example. Figure 6 shows a plane that is tri-
angulated with different resolutions and then deformed trivially: the tessellation
has no effect on the result due to the design of our measure (see also Figure 3a
and Section 3.2).

Handle Path Dependency. The result of our deformation depends not only on
the final position of the vertices building the boundary constraints but also on
the paths on which they move from starting to final position. This is a signifi-
cant difference to most existing deformation approaches. Figure 7 illustrates this.
There, the shape (a) is deformed by moving the yellow boundary to the right
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Fig. 7: Handle Path Dependency. Deforming the initial surface at t = 0 by dif-
ferent handle pathways from and to the same rest positions result in different
deformation results at t = 1. The images (b–e) show two linear antipodal defor-
mations, the images (f–i) two parabolic deformation curves.

Fig. 8: Beetle Car Deformations. The original beetle model (left) is deformed by
fixing the rear of the car and moving the handle at the engine hood into four
different directions (right).

while keeping the blue boundary constant (b). The successive reverse deforma-
tion (c) gives almost the original shape. Contrary, moving the handle to the left
first (Figure 7 (d)) ends up in a significantly different shape (e). Figures 7 (f–i)
show the movement of the handle over two mirrored paths, yielding different
final shapes.

While such a path dependence is not always the desired scenario, we believe
that for a number of applications it opens a wider flexibility of the modeling
process because it reflects the fact that real materials are never totally elastically
deformed. The ”memory effect” of the deformation gives the look of a combined
plastic and elastic deformation of a real material, even though only geometric
measures of the surface are considered. Furthermore, it allows to obtain a strong
twisting as shown in Figure 2b (bottom) which is impossible by path independent
methods.

Comparing to time-dependent Laplacian. We point out that it is not sufficient to
modify existent discrete and direct methods to operate in a continuous setting to
minimize metric distortion. Consider Figure 9 as an example. For this deforma-
tion a bi–Laplacian operator (see [6]) was discretized for every time step, partial
deformations were integrated within the same solver, boundary constraints are
same as in Figure 6. Comparing results, metric distortion is still significantly
higher – it didn’t improve much – than for our method. This is not surpris-
ing as different errors are minimized. We remark as bottom line that breaking
a discrete bi–Laplacian deformation trivially into a “continuous” deformation
one cannot achieve the same effect as our continuous method and other discrete
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Fig. 9: Time-Dependent bi–Laplacian Deformation. Comparison of metric distor-
tions over time for our method and time-dependent bi–Laplacian deformation.

state-of-the-art methods are likely to exhibit higher distortion by this strategy
compared to our approach, too.

Limitations. We see the main limitation of the approach in the relatively high
computation times: despite the fact that we accelerate our approach using the
GPU, the technique is far less interactive than state-of-the-art linear frameworks
when applied to large models and thus does not scale to very large meshes yet. We
also mention that for the linear operators applied memory footprint is probably
higher.

The path dependence of our method can as well be seen as a limitation.
We claim it is a features and an integral property of continuous deformations.
However, we are aware that depending on the application path dependence may
be also interpreted as an artifact.

7 Conclusions

In this paper, we made the following contributions: we defined the deforma-
tion by prescribing paths along which certain regions move over time. Then for
every time step a piecewise linear vector field is constructed by applying an
quadratic energy minimization approach. As a measure for metric distortion,
we introduced a new approach which considers the size of the triangles and can
be extended to incorporate the surface smoothness. The deformation tries to
preserve isometry. It shows significantly lower distortion of length, angles, and
area for a set of representative shapes compared to existing standard (linear
and non-linear) deformations. Moreover, the results look visually pleasing. Our
modeling metaphor defines handle paths. Both the final position of the handles
and the path influence the deformation.

The most prominent issue in future research is to further improve the perfor-
mance. In fact, we see reasonable chances to obtain higher frame rates using a
multiresolution approach for the error measures and solvers. Another interesting
challenge is the boundary value problem of path planning where the optimal
path between two poses is determined.
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