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ABSTRACT

Timing models are essential to a variety of music related
applications. In the field of performance research they
facilitate the analysis of music interpretations. For per-
formance synthesis they are essential for creating expres-
sive performances. This paper details our approach to
modelling musical tempo. An important issue is the de-
scription and implementation of continuous tempo transi-
tions. Therefore, we introduce two different approaches,
Explicit and Implicit Tempo Curves, and an intuitive pa-
rameterization to control their characteristics. These are
applied in a listener study to evaluate the human ability
to distinguish different tempo transitions. The result pro-
vides clues for optimizations and simplifications.

1. INTRODUCTION: MUSICAL TIMING

Timing is one of the most prominent aspects of expressive
music performance. Finding adequate timing models is
central to performance analysis [4, 5, 7] and synthesis [1,
8, 9]. Timing defines the mapping of symbolic time (score
position, MIDI ticks) onto physical time (milliseconds).
Timing, however, is a complex aspect that combines sev-
eral layers of macro and micro features. In our frame-
work we distinguish tempo (macro timing), rubato (self-
compensating micro deviations), asynchrony, and random
imprecision (deviations that cannot be traced to system-
atic origins, yet) [3].

This paper details the tempo aspect. After a short in-
troduction to the formalisms and timing conversion basics
(section 2) we describe two approaches to model continu-
ous tempo transitions, Explicit Tempo Curves (section 3)
and Implicit Tempo Curves (section 4). Both have their
advantages and drawbacks, as discussed in section 5. We
complement this discussion by a listener study that sys-
tematically reveals the ability of human listeners to distin-
guish different tempo curves. This provides useful clues
for optimization. Finally, section 6 gives a conclusion to
this paper.

2. TEMPO

The tempo defines the basic meter, typically in the format
“number of symbolic time units per physical time unit”
(e.g., beats per minute, bpm). Over the course of a mu-
sical piece the tempo must not be constant. This would,

in fact, create a quite mechanical and unmusical impres-
sion. Instead, human musicians apply discrete and contin-
uous tempo variations to emphasize dramaturgical points
of culmination, melodic bows, and musical form. The end
of a musical section, for instance, is often marked with a
local ritardando.

All tempo features can be formally represented by tem-
po instructions T that are organized in a sequential list, the
so-called tempomap MT . This formalism should be well
known from modern sequencer software.

MT = (T0, T1, ..., Tn)

The tempomap can also be seen as a sequence of curve
segments that map symbolic time positions d to tempo
values Tempo(d). The MIDI standard implements only
discrete tempo changes. Lots of small tempo steps are
used to create seemingly continuous transitions. We want
to extend this here. A tempo instruction is defined by the
following quintuple.

Tm = (dm, t1,m, t2,m, bm, im) for m ∈ [0,n]

The MIDI tick date of the instruction is indicated by dm.
The instruction defines a continuous tempo transition from
dm to dm+1 (the date of the succeeding instruction or the
end of the piece) that begins with tempo t1,m and ends
up with t2,m (both in bpm). The length of one beat is
given by bm in the following format: quarter note→ 0.25,
half note → 0.5, and so on. The factor PPQ (pulses per
quarter or ticks per quarter), that can be found in the header
of each standard MIDI file, allows to convert this into
MIDI ticks.

Continuous tempo transitions are rarely of linear shape
but feature monotonous curves with varying shape. To
capture this, we introduced the fifth attribute to the tempo
instruction, im ∈ (0,1). In the case of a constant tempo
(t1,m = t2,m) it can be ignored. Otherwise it indicates a rel-
ative position between dm and dm+1. At this position half
of the tempo transition has to be processed.

Tempo((dm+1−dm) im +dm) = 0.5(t1,m + t2,m)

We call this the mean tempo condition. It is a metaphor
that performers are used to working with when they say,
for instance: “You have to be earlier faster.” By im = 0.5
the most relaxed, in fact linear, characteristic is created.
The more im differs from 0.5, the more the tempo transi-
tion comes early (0 < im < 0.5) or late (0.5 < im < 1).
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Figure 1. Explicit tempo curves by potential functions.

To convert a symbolic time position d (in ticks) into a
milliseconds date Ms(d) the integral of the inverse tempo
function has to be computed. In the following notation of
Ms this is done segment-wise, where one segment corre-
sponds to one tempo instruction.

Ms(d) =






d +Ms(0) : d ≤ d0

const(d)+Ms(dm) : t1,m = t2,m

tran(d)+Ms(dm) : otherwise

Ms(0) is the time when the playback starts, d0 the date of
the first instruction, and m the index of the last instruction
before d. For segments with constant tempo the conver-
sion is done by function const.

const(d) =
60000(d−dm)
t1,m ·4 ·bm ·PPQ

Continuous tempo transitions are implemented by func-
tion tran. We will now describe two possible implementa-
tions of this function, Explicit and Implicit Tempo Curves.

3. EXPLICIT TEMPO CURVES

This approach constructs the tempo curve directly and per-
forms the time conversion by numerical integration. For
the tempo curve the potential function in the unity square
is used and scaled to the actual measurements of the in-
struction (see figure 1).

Tempo(d) =
(

d−dm

dm+1−dm

)p(im)
(t2,m− t1,m)+ t1,m

The exponent p(im) follows from the mean tempo condi-
tion.

p(im) = logim 0.5 = ln0.5/ ln im

The milliseconds date tran(d) is approximated by t̃ran(d)
via numerical integration of the inverse tempo function

(Simpson’s rule with N/2 iterations and even N).

t̃ran(d) =
d−dm

3N



 1
Tempo(x0)

+
N
2 −1

∑
k=1

2
Tempo(x2k)

+
N/2

∑
k=1

4
Tempo(x2k−1)

+
1

Tempo(xN)

)
60000

4 ·bm ·PPQ

with xk = dm + k ·
d−dm

N

The approximation accuracy can be controlled by N. Fol-
lowing the estimation of [6] the approximation error is
given by

∣∣tran(d)− t̃ran(d)
∣∣≤

(d−dm)5

180N4 max
x∈[dm,d]

∣∣∣∣∣∣

(
1

Tempo(x)

)(4)
∣∣∣∣∣∣

But how much accuracy is necessary? The application
is, of course, free to chose any setting. But the compu-
tation time increases together with N. Hence, too high a
setting should be avoided in the context of realtime ap-
plications, like interactive and adaptive music [2]. The
following question may be even more important: To what
extent can the human listener distinguish different tempo
curves? The study in section 5 traces this question and
will give clues to find appropriate settings for N.

4. IMPLICIT TEMPO CURVES

In the previous approach, tempo curves were modelled ex-
plicitly and the time conversion was implemented by nu-
merical integration. The Implicit Tempo Curves approach,
goes the opposite way. The curve segment of Ms is di-
rectly constructed. This bypasses the (possibly expensive)
time conversion and shifts the effort to the preprocessing.
However, the challenge is to construct the timing curve so
that the corresponding tempo curve features the desired
characteristics. This means in particular that it has to hold
to the mean tempo condition (see section 2).

We apply a quadratic Bézier curve to approximate the
timing curve. It is spanned by the three control points P0,
P1, and P2. The coordinates of the first of them are given;
they arise from the previous curve segment.

P0 = (dm, Ms(dm))

The third control point can be computed using the Explicit
Tempo Curves approach. As this runs in the preprocessing
phase this can be computed with high fidelity (great N).
In the context of performance analyses this can also be
measurement data that shall be approximated.

P2 = (dm+1, Ms(dm+1))

Through t1,m and t2,m also the timing gradients, g1,m and
g2,m, at both points are given.

gz,m =
60000

tz,m ·4 ·bm ·PPQ
for z ∈ {1,2}
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Figure 2. The explicit and implicit models’ tempo and timing curve in comparison.

Thus follows the position of P1.

P1 = (dP1 , g1,m(dP1 −dm)+Ms(dm))

dP1 =
g1,mdm−g2,mdm+1−Ms(dm)+Ms(dm+1)

g1,m−g2,m

When rendering these Bézier curves the corresponding
tempo curves show similar characteristics to those of the
explicit model but they are not identical (see figure 2)!
They do not have to be exactly the same, either. The dis-
persion that we could observe in human performances [3]
is too great to favor either of these curves. But the im-
plicit model does not even hold to the mean tempo con-
dition. The Bézier curve as it is constructed up to now
is just an initialization and needs further adaptation. This
can be done in two possible ways, as will be described in
the following sections.

4.1. Shift the Terminal Point

P1 derives directly from the other two control points. P0
is fixed. But P2, the end of the curve, can be shifted along
the milliseconds axis. This will also change the position
of P1 and the course of the tempo transition. A simple
approach to find an approximate solution is by bisection
that checks for the mean tempo condition. The boundaries
of the search space are:

Ms(dm+1) ∈
((dm+1−dm)g1,m +Ms(dm), (dm+1−dm)g2,m +Ms(dm))

It is important to be aware of the fact that the timing of this
approach differs from that of the explicit model (and of the
initial Bézier curve) not just locally within (dm,dm+1] but
also beyond dm+1 as deviations are not compensated here.
If it is desirable, for some reason, to keep synchrony with
the explicit model or with some other timing data (like
empirical measurements that shall be approximated), P2
has to remain fixed at its initial position. Therefore, the
following approach suits better.

4.2. Rational Bézier Curves

A rational Bézier curve applies weights w0,w1,w2 to its
control points. The rational quadratic Bézier curve is de-
fined as follows.

P(t) =
w0(1− t)2P0 +w12t(1− t)P1 +w2t2P2

w0(1− t)2 +w12t(1− t)+w2t2

These weights can be used to distort the curve in a desired
way and also to fulfill the mean tempo condition. In fact, it
is only necessary to adapt the weight w1 of point P1 there-
fore (as done in figure 2). This still does not create a shape
that is identical to the explicit model. If this or any other
characteristic shall be approximated, both further weights,
w0 and w2, can be edited, too. The effort, however, can be
considerable and is probably not necessary in most appli-
cation contexts, as the following discussion shows.

5. DISCUSSION AND STUDY

Timing conversions can be very expensive, especially for
continuous tempo transitions. This may not be a problem
as far as they can be done offline (before the playback).
But if they have to be performed in realtime directly at
playback, runtime issues become important. With two dif-
ferent approaches, Explicit and Implicit Tempo Curves, we
try to tackle this issue. The explicit approach allows one
to select a good tradeoff between accuracy of numerical
integration and computation effort. The implicit approach
shifts most effort to the preprocessing.

But both are not equivalent! Although they are all
subject to the same mean tempo condition they create dif-
ferent tempo and timing curves. In measurements of hu-
man performed music we could observe a relatively large
amount of dispersion [3], so that neither of the here pre-
sented models can be proven to be the better one. In cer-
tain application contexts one may be more handy than the
other. The implicit model may, for instance, be better
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im settings correct answers
type 1st 2nd diff. # % significance
acccel. 0.7 0.3 0.4 16 88.9 0.001
rit. 0.5 0.4 0.1 5 27.8 0.096
acccel. 0.6 0.8 0.2 9 50.0 1.0
rit. 0.4 0.4 0 8 44.4 0.815
acccel. 0.4 0.3 0.1 9 50.0 1.0
rit. 0.3 0.6 0.3 14 77.8 0.031

Table 1. The results of a listener study with 18 partici-
pants. Six pairs of continuous tempo transitions had to be
classified as identical or different. They differed only with
respect to the parameter im (see section 2).

suited to analyze and resynthesize empirical data. None-
theless, both models produce equally valid approxima-
tions.

Therefore, the more important question may be: How
precisely do they have to mimic each other to be indis-
tinguishable for the human listener? The answer to this
question implies also what integration accuracy is needed
in the explicit model. Therefore, we conducted a listener
study with 18 participants (7 musicians and 11 non-musi-
cians). They listened to 6 pairs of tempo transitions and
were asked to decide whether these were different or iden-
tical (indistinguishable). They were also given the sheet
music for better orientation. The tempo transitions were
all of the same length (16 measures with 4/4 time signa-
ture) and were performed with the same music. All ac-
celerandi began with 40 bpm and ended up with 120 bpm.
All ritardandi began with 120 bpm and decelerated to 40
bpm. Only the parameter im, that controls the course of
the tempo curve, was different. The music was rendered
with the explicit model at N = 512 (that is a segmentation
for each 16th note).

The outcome of the study is given in table 1. The
participants were clearly able to recognize contrary curve
characteristics, that is, “root shape” (im < 0.5) against “po-
tential shape” (im > 0.5), that can be found in the first and
sixth pair of tempo transitions. All other pairs with differ-
ing im up to 0.2 could not be distinguished significantly.
In our music examples the 0.2 difference produced tempo
differences of 10 up to 23 bpm lasting for 10 measures.
The resulting timing difference was 15 seconds. Even the
0.1 difference caused tempo differences of 5 up to 8 bpm
over 10 measures and timing differences of still 4 seconds.

These results indicate that differing curves that run
within a certain narrowband of a tempo curve Tm can be
applied alternatively. This narrowband is spanned by vary-
ing the parameter im±0.1. For the listener it will make no
difference, especially as the rational Bézier variant com-
pensates its deviations up to the end. In the case of the ex-
plicit model even a rough numerical integration with N ∈
{2,4} seems to suffice for most situations. This makes the
explicit model unexpectedly suitable for realtime applica-
tions, even more than the implicit model. The narrowband
furthermore gives a measure for comparison of any tempo

models in the literature and which can be used alterna-
tively.

6. CONCLUSION

This paper detailed the formalisms and implementation of
our tempo model. We have introduced the mean tempo
condition as a meaningful feature to describe and distin-
guish the characteristics of continuous tempo transitions.
Based on this feature we conducted a listener study to
evaluate the human ability to recognize different tempo
transitions. The results indicate perspectives for optimiza-
tion or simplification.
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