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ABSTRACT
This paper deals with dynamics, i.e. loudness, in music. We
developed models to describe and recreate dynamics prop-
erties of human musicians’ expressive performances within a
performance system. Their diversity and variability bears a
particular challenge to the flexibility of such models. There-
fore, our approach is based on a multi-layered discrimination
of different dynamics aspects. Each of which includes certain
degrees of freedom to flexibly define different shapings. For
evaluation we compare these models with human performed
dynamics.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development;
J.5 [Arts and Humanities]: music, performing arts

General Terms
Music, Expressive Performance

Keywords
Dynamics

1. INTRODUCTION
Musical dynamics touches everything concerning loudness
in music. When musicians use dynamics to intensify the ex-
pressivity of their performance, they have to decide when
and why they play loud, soft, perform a crescendo or an ac-
cent, and so on. These questions are, in fact, crucial and
entail complex loudness shapings. Generally, expressive dy-
namics is more than a sequence of single events. In nearly
every performance an interplay of several different dynamics
layers creates permanent loudness changes.

How to model this within a performance system? Some rule-
based approaches derive such properties from aspects of the
compositional structure like the degree of dissonance, the
pitch of a tone [4], or the phrasing [12]. Others model dy-
namics in accordance with certain timing aspects [13, 16],

construct it within a comprehensive mathematical music
theory [6], or apply machine-learning techniques to capture
human musicians’ individual performance styles [15]. Most
of these approaches are strongly oriented towards perfor-
mance principles that were established in the Romantic era.
These do not hold generally to approach expressive dynamics
in different performance styles, though [10]. Such a genera-
lization claim leads to a more fundamental question: How
are dynamics, and especially dynamics transitions, shaped
and what degrees of freedom exist?

This paper traces our research into this question. It is em-
bedded in a series of detailed investigations that covers the
‘three pillars’ of expressive music performance, namely dy-
namics, timing [2], and articulation [5]. Theorization and
detailed analyses of human performances lead to deep in-
sights and new approaches to mathematically model perfor-
mance properties and implement them within a performance
rendering engine. This engine is developed as a tool for mu-
sicological performance research (e.g., for the reconstruction
of historically informed performance practices) and for music
production in general. It further implements several tech-
niques that allow the interactive combination of different
performance styles which is particularly interesting in the
games scoring context [1]. The developments and findings
described in this work are highly beneficial for the quality
of the interaction-driven performance transitions. A fur-
ther application scenario is the performance of computer-
generated music.

A major concern when analyzing human performances is to
identify variability within dynamics processes. A crescendo
is not always performed in the same way, the loudness of
forte differs from instrument to instrument, and so on. For
this purpose, Baroque music proved to be particularly ben-
eficial. In this stylistic era all types of dynamics were estab-
lished and performative decisions (which affect the shaping
of dynamics processes) feature a large amount of individual
freedom. Nearly every dynamics-related decision is made by
the musician and incorporates prior knowledge of common
practices. Over succeeding stylistic eras dynamics became
more and more a subject of compositional decisions and was
notated more detailed in the score. Moreover, the rigid rule
of dynamics that have to mimic phrase arches was not yet
common in the Baroque.

The remainder of this paper is structured as follows. The
theoretical basis to formalize dynamics is introduced in Sec-
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tion 2. Section 3 develops the models to capture dynam-
ics features and their variable shaping. These are comple-
mented in Section 4 showing that continuous dynamic tran-
sitions played by human musicians are neither linear nor
generalizable.

2. DEFINITIONS
In its broadest sense musical dynamics comprizes all aspects
of loudness in music. This is not one homogeneous class of
features but a conglomerate of several feature classes. These
have different characteristics and are widely independent of
each other. Their only common property is that they affect
the loudness of musical events. Their most striking differ-
ence is the temporal extent of their effect. In this respect,
we distinguish macro dynamics and micro dynamics, i.e.,
temporally large-scale and small-scale dynamics.

This Section describes their formalization. It is basis for
both, the analysis of human musician performances and the
implementation within a music engine to render expressive
performances in the MIDI format.

2.1 Macro Dynamics
Macro dynamics is what is traditionally known as dynamics
in music and indicated by instructions like piano, mezzo-
forte, forte, crescendo, and decrescendo. Two types of in-
structions can be distinguished: (i) those that discretely set
a loudness level and (ii) those that dictate continuous dy-
namics transitions. The temporal range of an instruction
is terminated by its successor and comprizes multiple mea-
sures, phrases, even up to the whole piece of music. It is
rarely less than one measure.

In a polyphonic musical setup dynamics do not have to be
equal in all parts. For instance, those parts that perform a
melodic task may be set louder than their accompaniment.
This may change later on in the piece. Consequently, macro
dynamics is formally a sequence of dynamics instructions
Ij , dedicated to one or more musical parts. We call this
sequence a dynamics map MD in correspondence to the well-
known tempo map paradigm.

MD = (I0, I1, ..., Ii)

One such instruction Ij has the form

Ij = (dj , v1j , v2j , shapej), j ∈ [0, i]

with dj the tempo-independent musical date of the instruc-
tion (score position or MIDI ticks), the two loudness val-
ues v1j (initial loudness) and v2j (target loudness), and the
so-called shape term (shapej). Thereby, instruction Ij de-
scribes a continuous loudness transition from v1j to v2j in
the timeframe [dj , dj+1) with shapej . The construction of
this shape is detailed in Section 3.1. If Ij is the last instruc-
tion in MD its timeframe terminates with the end of the
musical piece. When working with MIDI sequences this is
the last event in the sequence, usually the EndTrack event.

For the technical implementation the loudness values v1j

and v2j must be declared numerically. The KeyOn velocity
in the MIDI standard, for instance, allows only integers from
0 (muted) to 127 (loudest). A different convention is com-
monly used in music notation. Here loudness is indicated

by strings like ff, f, mf, p, pp, etc. Our implementation sup-
ports both conventions so as to make the manual editing
over a high-level description language (XML-based) more
intuitive. Therefore, we introduce a lookup table as header
to the dynamics map which defines the mapping from string
to numerical value. An example is shown in Table 1.

String ppp pp p mp mf f ff fff

MIDI vel. 2 36 48 64 83 97 111 125

Table 1: An example lookup table for the mapping
of dynamics instructions to MIDI velocity values.

Different instruments can further differ with regard to their
loudness scope [8]. Recorders, for instance, are relatively
quiet and have very little scope to vary. Brass instruments,
by contrast, feature an ample scope upwards (louder) but
playing quiet is relatively hard. As a consequence, a recorder
forte would differ significantly from a brass forte. As far as
the sampler or synthesizer in use does no such scaling it has
to be done by the software. In fact, it is relatively easy to
formally encapsulate this variance. As each instrument/part
has its own dynamics map it also has its own lookup table
which can define different velocity values. The lookup ta-
ble can also be used to compensate the differing velocity
interpretation of samplers and synthesizers [3].

2.2 Micro Dynamics
Micro dynamics add fine variations to the underlying macro
dynamics. The temporal extent of micro dynamics features
does not exceed the length of one measure, in contrast to
macro dynamics. Two classes of micro dynamics features
have to be distinguished: metrical emphasis and articula-
tion. Articulation is a very comprehensive aspect of music
performance that affects all facets of the forming of each
single notes, namely envelope, duration, timbre, intonation,
and loudness. Because of its complexity, it is traditionally
treated as a separate concept, apart from dynamics but re-
lated to it. So do we; the further text will omit articulation.
We address this aspect exclusively and more detailed in [5].

Time signature and musical style often suggest specific met-
rical emphasis or accentuation schemes that recur measure-
wise. It reflects the distinction between weak and strong
beats, the perceptual grouping of pulses according to a met-
rical structure that is defined by the time signature. As
already described for macro dynamics, the metrical empha-
sis can as well differ from part to part and can change during
the course of the piece. Therefore, all metrical emphasis in-
structions Ek of a part are organized in an emphasis map
ME .

ME = (E0, E1, ..., En)

with

Ek = (dk, scopek, (S0
k, S1

k, ..., Sl
k)), k ∈ [0, n]

Such an emphasis instruction Ek defines the date dk from
when on it is applied to all following measures up to dk+1

or the end of the piece. It furthermore defines a sequence
of emphases S0...l

k , this is the actual emphasis scheme (de-
tailed in Section 3.2), and a dynamic scope (scopek) to scale
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Figure 1: (De-)Crescendi are modelled by cubic
Bézier curves. Coordinates x2 and x3 are variable.

the accentuation intensity of the scheme. For the MIDI im-
plementation this has to be an integer value in the interval
[0, 127].

3. SHAPING DYNAMICS
The previous Section laid the formal basis to describe dy-
namics features. This Section will now look closely at the
modelling aspects.

3.1 (De-)Crescendo
A (macro) dynamics instruction Ij = (dj , v1j , v2j , shapej)
defines a continuous loudness transition from v1j to v2j in
the time frame [dj , dj+1). Terraced dynamics can be consi-
dered as a special case where v1j is equal to v2j . Otherwise, a
substantial crescendo (v1j < v2j ) or decrescendo (v1j > v2j )
is indicated.

In human musicians’ performances these will rarely feature
a linear behaviour for several reasons. The linear transition
appears mechanical and aimless whereas the loudness tran-
sition of a human musician seems more determined. Usu-
ally, the listener can anticipate the target (the end) of a hu-
man performed (de-)crescendo. A linear transition would
furthermore feature indifferentiabilities, i.e. kinks, at the
connections to the previous and following dynamics instruc-
tion. These are not necessarily problematic as far as the
dynamics change is rendered note-wise (each note with its
own loudness) and as these notes are clearly separated from
each other (e.g., by staccato or strongly accentuated artic-
ulation). However, within a continuous sound stream (held
tones, legato play) these kinks are clearly audible just like
choppy animations in the visual domain. For more organic
animations aspects of inertia have to be considered. There-
fore, the animation speed is usually regulated by sigmoidal
functions that ensure g1 continuous connections at the be-
ginning and end of animation sections.

As dynamics changes in human-performed music are subject
to similar physical factors we also apply sigmoidal charac-

teristics. These are modelled by cubic Bézier curves with
Z-shaped control polygons (see Figure 1). It is defined in

the unit square and then scaled to the actual temporal and
dynamic extent that is given by the other parameters of the
dynamics instruction. Thus, the shape of the transition is
defined independent of its scaling. The control points are
P1, P2, P3, and P4 of which P1 and P4 are bound to coor-
dinates (0, 0) and (1, 1). The ordinates y2 = 0 and y3 = 1
are fixed, too, whereas x2 and x3 are variable in [0, 1]. This
simplifies the polynomial description of the curve.

x(t) = (3x2 − 3x3 + 1)t3 + (−6x2 + 3x3)t2 + 3x2t

y(t) = −2t3 + 3t2

In our implementation the user does not set x2 and x3 di-
rectly. Instead, we introduce two descriptors which may be
more intuitive: straightness (s) and protraction (p). These
are then converted into x2 and x3 values. Thus, the shape
of a dynamics transition is defined as

shapej = (sj , pj)

The straightness parameter (s ∈ [0, 1], float) sets the marked-
ness of the S-curvature. The linear shape is created by s = 0.
The strongest possible curvature is achieved by s = 1.

The protraction (p ∈ [−1, 1], float) introduces a further dis-
tortion. It describes a tendency whereby the majority of the
loudness transition is made relatively soon (−1 ≤ p < 0),
relatively late (0 < p ≤ 1), or evenly balanced (p = 0).

For p = 0 the x-coordinates of P2 and P3 are set as follows.

x2 = s and x3 = 1− s

For p 6= 0 the straightness-related shifting of x2 and x3 has
to be scaled to the remaining interval which is no longer
equal for both. The conversions are done by the following
formulas.

x2 = s +

(
|p|+ p

2 · p − |p| · s
p

)
· p

x3 = 1− s +

(
p− |p|
2 · p +

|p| · s
p

)
· p

The transition can be rendered into the onset/attack loud-
nesses of the notes. This rough discretization corresponds
to a note-wise terraced dynamics. It is sufficient for struck
instruments (piano, harp etc.) and usually also suffices for
temporally close, i.e. fast, note sequences. However, most
wind and string instruments, as well as the human voice,
are able to change their loudness even during the sounding
tone. We call this phenomenon sub-note dynamics. In the
MIDI format this can be done through the channelVolume
controller. Some samplers and synthesizers offer specialized
controllers therefore. The software sampler Vienna Instru-
ments [14], for instance, has the so-called Velocity-Cross-
Fade controller.

A continuous loudness change still has to be discretized into
a sequence of controller messages. The resolution of this
discretization is set by an additional parameter in the shape
term, subNoteDynRes.

shapej = (sj , pj , subNoteDynResj)



This third parameter defines the step width for t when tra-
cing the Bézier curve by MIDI controller messages. It is
defined in the interval (0, 1]. E.g., subNoteDynRes = 0.1
triggers 10 controller messages along the Bézier curve, 0.01
triggers 100; the smaller the more. A higher density of mes-
sages produces smoother results. However, if the controller
value does not change (usually for numerical reasons, MIDI
controller values are integer), the message is redundant and
causes unnecessary MIDI traffic. This is easily avoided in
the implementation by filtering consecutive controllers with
equal values or dates.

3.2 Metrical Emphasis Scheme
Amongst the date and scope parameters an emphasis in-
struction E defines a sequence of emphases (S0, S1, ..., Sl).
This sequence constitutes the metrical emphasis scheme that
is repeatedly applied to all measures the instruction covers.
Hence, an emphasis scheme describes the loudness contour of
one measure which is then added upon the underlying macro
dynamics. More precisely, an emphasis scheme defines the
contour of the deviations from the underlying macro dynam-
ics. These can also be negative.

An emphasis Sm represents one segment of the scheme.

Sm = (bm, e1m , e2m , e3m), m ∈ [0, l]

The segment begins with beat bm (for the first beat in the
bar bm = 1, second beat bm = 2, etc.) and ends with bm+1 or
the end of the bar. Hence, in a 3/4-time signature any em-
phasis with bm ≥ 4 will be ignored since the next bar begins
already at the fourth beat. Generally, bm is a floating-point
value so that an emphasis can be defined at any position
within the bar (e.g., bm = 2.5 designates beat ‘two-and’).

The emphasis, or accentuation, at bar position bm is set
by e1m (floating-point value in [−1, 1]). e1m = 1 sets the
strongest accentuation, 0 causes no deviation from the ba-
sic loudness, −1 indicates maximal reserve. These values
are scaled by the dynamic scope (defined in E) to the actual
loudness deviations which then only have to be added to the
macro dynamics. However, if basic loudness plus/minus dy-
namic scope exceeds or undercuts the MIDI velocity range,
it is automatically scaled down. This ensures a differenti-
ated accentuation as far as possible. It furthermore matches
a situation in reality: Accentuation is less pronounced at the
borders of the dynamic ambit.

Up to now, only discrete emphasis points have been set (b0

to bl). To cover the whole segment [bm, bm+1) a transition-
ing course has to be defined that is applied to the interval
(bm, bm+1). Therefore, we introduce the emphasis values
e2m and e3m . Both are optional. Without them a constant
emphasis of e1m is set on the whole segment. If the notes
between the major beats shall be set at a different emphasis
level, e2m is used. This still produces a constant emphasis
but it may suffice for most situations in musical practice.

In contrast to the long macro crescendi and decrescendi that
usually involve a fair quantity of notes a segment of an em-
phasis scheme covers only very few notes and only a very
small dynamic range. Nonetheless, their accentuations do
not have to be equal/constant. They may, for instance, tran-
sition to the emphasis of the following beat or lead pickup-

like to the next bar. This is a monotonous behaviour. There-
fore, linear functions do well for approximation. In fact,
any curved characteristics, such as described in the previous
Section for the crescendo/decrescendo, are exaggerated here.
Differences between linear and sigmoidal shapes are scarcely
perceptible. Thus, we apply linear transitions. These are de-
fined by adding parameter e3m . The emphasis will now run
from e2m to e3m in the interval (bm, bm+1).

4. MEASURING DYNAMICS
Dynamics can be manifold, as the preceding Sections al-
ready stated. Regarding the analysis of dynamics Baroque
music has several advantages. Continuous dynamics tran-
sitions are to a high degree an individual decision of the
performer. Unlike in later styles dynamics are rarely anno-
tated but one of the most important expressive tools. The
rules that are described in treatises [11, 9] are rather guide-
lines than strict, describing possible ways to decide whether
or not a transition can be applied.

On the other hand, treatises include distinct rules for beat
emphases that parallel the hierarchy of beats in a measure.
To get empirical data for the intensity of metrical accents
one of the most prominent dance-movements, the minuet,
was analyzed. The advantage of dance movements like the
minuet is that they are repeated several times, thereby in-
creasing the quality of the data collected.

Sub-note dynamics can be observed within long tones that
are not accompanied and disrupted by other instruments.
Here a solo-piece is more useful.

Generally, the situation is further complicated by the fact
that loudness is a subjective impression, which depends on
individual physiological thresholds; and the loudness of in-
struments differs also with respect to pitch and tone color
[7]. Hence, research concerning absolute decibel values can
only support rules of thumb. Nevertheless it is possible to
approximate a curve for normalized data and analyze pro-
portional differences of beat accents.

Consequently, the following conditions were made: (i) a
stylistic homogeneity ensured by the selection of similar com-
positions, (ii) the focus on experts in historically informed
performance, for they know the treatises, (iii) use of pieces
that include repeated sections, and (iv) the analyses of spe-
cific movements and sections, in particular regarding dy-
namical aspects.

4.1 Methodology
The analyses included live- and studio-recordings. Apart
from the experimental recordings all pieces were composed
by Georg Philipp Telemann. Except for one studio record-
ing the same orchestra accompanied different soloists. All
recordings had the same resolution of 44.1kHz and 16bit.
Each tone was represented by its maximum decibel value. To
avoid mismatches of loudness values in long crescendo notes
the last third of long tones was not taken into account. All
loudness values were normalized; in the micro dynamic task
the decibel values were first computed as deviations from
the mean loudness per measure and normalized afterwards.
The compositions used in the analyses are as follows:



Recorder concert: Large crescendi were performed in the
second movement (bars 13–16 and 191–194) of the
Concert in C Major for Recorder, String Orchestra
and Cembalo. It was recorded live twice during the
final round of the 5th international Telemann competi-
tion for historical woodwinds in Magdeburg (TC). The
accompanying ensemble played two times with differ-
ent soloists. The analysis further includes one studio
recording of the same orchestra accompanying another
soloist.

Flute concert: In the same round of the TC the Concert
in D Major for Flute and String Orchestra was record-
ed to analyze a short crescendo in bar 94 of the fourth
movement. Also a motif from the first movement was
taken into account, which includes four sixteenth notes
played with a decrescendo. The accompanying ensem-
ble played two times with different soloists. The anal-
ysis further includes two studio recordings, in one of
which the same orchestra performed but with a differ-
ent soloist.

Flute solo: The B Minor Solo for Flute and Cembalo from
the first part of the Tafelmusik was performed by seven
flute players during the TC. The analysis focussed on
several passages of two tied eighth notes played with a
decrescendo. In addition, a decrescendo and crescendo
within one large note, lasting seven quarter notes, was
considered in the seventh and eighths bar of the first
movement. In this case the decibel progression was
approximated for an analysis of sub-note dynamics.
Because of extensive embellishments the analysis in-
cluded six performers playing the first movement.

Suites a2 and C6: Studio recordings of the first minuets
of the Suite for Orchestra in A Minor and C Major
(TWV 55:a2 and 55:C6 ) were analyzed regarding met-
rical emphases. Each minuet was repeated two times.
A2 was performed by eight ensembles and C6 by four
ensembles.

Experimental recordings: Ten musicians were asked to
play continuous quarter notes and perform (de-)cre-
scendi between piano and forte. The recordings were
additionally used to measure the dynamic range of
the instruments. Every participant performed eight
crescendi and decrescendi. The experimental pieces
were of two kinds so that (de-)crescendi were placed in
the centre of the piece as well as on the final notes, con-
taining one or two bars. Four musicians played the task
with different instruments so that all data consisted of
16 dynamic transitions played by 14 instruments.

Dynamics are individual not only for the decision on whether
a (de-)crescendo shall be performed but also for the transi-
tion length and extent of loudness. In the analysis the dura-
tion was reset when a (de-)crescendo started earlier or ended
later than it was supposed to. To ensure that all transitions
were continuous and distinct, data were excluded if (i) the
loudness difference between the first and the last note was
lower than eight decibel, (ii) the transition was not continu-
ous but terrace-like, (iii) there were too few note events be-
tween the start and end note, or (iv) there was no transition
performed. For every (de-)crescendo the decibel values and
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Figure 2: measured protraction and straightness pa-
rameters.

time positions were normalized. Consequently, large tempo
changes would confound the curvature, so no transition was
analyzed on a final ritardando or any other intense tempo
changes. Afterwards, the Bézier approximation was made.
Setting the first loudness value at 0 and the last at 1, the
control points 0 ≤ x2 ≤ 1 and 0 ≤ x3 ≤ 1 were transformed
into protraction and straightness values.

4.2 Results
All computed straightness and protraction values are plotted
in Figure 2. As can be seen, both plots show no linear rela-
tionship between the two dimensions. In the experimental
recordings there were no significant differences between the
final and non- final position, crescendo or decrescendo. Since

-

6dB
one stage approximation

protraction: -0.094

straightness: 0.000

r= 0.88

rms= 1.21

•
••

• •
•••

•
• •

• •
• ••••

•

•

-

6dB
two stage approximation

protraction 1:-0.557
straightness 1: 0.404

r= 0.96
rms= 0.96

protraction 2: 1.000
straightness 2: 1.000

r= 0.94
rms= 0.99

•
••

••
•• •

•
• •

• •
•• ••••

•

•

Figure 3: Crescendo characteristics in the Recorder
concert. Dots: empirical data. Line: approxima-
tion.



the experimental scores only included piano and forte, all
musicians played very marked (de-)crescendi. The median
p-f range was 21.4 dB. (De-)crescendi sometimes started be-
fore the annotation and some musicians begun the crescendo
with a decreased loudness. The protraction values tend to
be smaller than but also near zero, whereas the straightness
shows a larger distribution, particularly in the crescendi.
Nevertheless, most straightness values are close to zero as
well. In the live- and studio recordings many data were ex-
cluded in accordance to the preconditions in Section 4.1. For
instance, from all 36 possible (de-)crescendi in the Flute solo
only nine could be considered; in the Flute concert fifty per-
cent of the 32 samples had to be excluded. From this point
of view general consequences remain conjectural. Though it
seems obvious that the straightness in the live- and studio
recordings tends to be near the extreme poles. In both plots
there is no combination of medium straightness and extreme
protraction.

After the first approximation the ensemble crescendi in the
Recorder concert showed a linear characteristic (not plotted
in Figure 2, one instance is shown in Figure 3, left), which
did not fit the empirical data well. The correlation coeffi-
cient r was rather weak and the differences of the approx-
imation and the empirical data were large. Interestingly,
the empirical data showed a flipped S-characteristic that
contradicts the avoidance of indifferentiabilities predicted in
Section 3.1. An example is plotted in Figure 3. There the
crescendo consists of two stages: The first half shows a dis-
tinct increase of loudness, followed by a linear crescendo
until a final jump towards the target loudness finishes it.
Consequently, all crescendi were approximated anew in two
steps. This increased the quality of the approximation, as
the larger correlation coefficient r and the decreased root
mean square value rms reflect. Shorter crescendi, for exam-
ple those in the fourth movement, showed a positive protrac-
tion, which is a characteristic similar to the second stage.

The short decrescendi in the Flute concert showed diverse
characteristics. At their first occurrence and in the first
repetitions the protraction was greater than zero and the
straightness got very large. In later repetitions the protrac-
tion fell below zero. Different characteristics were found in
the Flute solo (see Figure 4). Here decrescendi were similar
to the Flute concert but also linear transitions were found.

The characteristics of sub-note dynamics were taken from
the Flute solo. These were unequivocally curved as assumed
in Section 3.1. Figure 5 shows one example of the tied dotted
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Figure 4: Decrescendo characteristics. Dots: empir-
ical data. Line: approximation.

colors indicate normalized loudness deviation
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bar
Suite a2

1 2 3 d̄B

I 6.7
II 6.9
II 6.1
IV 6.4
V 8.3
VI 11.2
VII 9.9
VIII 4.7

Σ̄

bar
Suite C6

1 2 3 d̄B

I 15.1
II 13.2
III 15.1
IV 13.5
V 14.1
VI 13.9
VII 12.4
VIII 9.4

Σ̄

Table 2: Loudness differences in minuet beats.

half notes that were played with a decrescendo on the first
and a crescendo on the second note.

Less individual characteristics were found in the Micro Dy-
namics. Although the mean decibel value in the Suite C6
was larger than in a2, the proportions of loudness per mea-
sure were clearly increased for the first and decreased for
the third beat. Beside the significance of the mean results,
Table 2 shows the mean proportions referring to each of the
eight bars in each minuet. There the cell colors reflect the
loudness value referring to the distribution of all values in
both tables. A typical phenomenon in Telemann’s minuets
is that he subdivides the eight bar phrase into two-bar sec-
tions in the first half and one bar sections in the second
half. This is obviously reflected in the dynamic patterns
of C6. There every second beat was accentuated as if a 3

2

was being played over the 3
4. Moreover, the first 3

4 bar acts
as pickup to the 3

2, causing an ample emphasis on the first
beat in all even measures. The maximum and minimum
loudness differences from the mean were 2.73 dB and -2.44
dB respectively (without taking the last bar into account,
for these loudness differences were independent of accents),
which is twelve percent of the piano forte range of the ex-
perimental recordings. Considering that musicians play a p
louder when the same piece includes a pp or even ppp, it can
be assumed that the correspondent KeyOn velocity shown
in Table 1 is lower for the p and larger for the f. Referring
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Figure 5: Approximation of sub-note dynamics in
Flute solo. Small dots: empirical data. Big dots:
approximation.



to a piano-forte difference of 55 KeyOn-velocity values the
corresponding dynamic scope would be approximately 20.

4.3 Discussion
The preceding results have amply demonstrated that dy-
namic transitions are individually shaped; that is, any usage
of mean values would not be trustworthy. Linear charac-
teristics were found in experimental recordings. Although
in the live- and studio recordings the amount of data was
small and the results are therefore insignificant, the results
allow to conclude that the latter characteristics are not lin-
ear. However, there are some musical facts that additionally
might be plausible. The details in Figure 2 may lead to the
assumption that different characteristics of crescendi and
decrescendi depend on the direction of emphasis in musical
structure:

Since the protraction is responsible for the early or deleted
start of the core transition, it is the most influential factor.
It emphasizes the musical figure, the transition itself, and
the degree of expectation of the succeeding figure:

protraction < 0: The loudness transition starts early. In a
crescendo the dynamics change itself becomes empha-
sized, whereas in a decrescendo only the very outset of
the figure is loud. This results in an accentuation, as
found on the later repetitions of the decrescendi in the
Flute concert, or the first dotted half note decrescendo
in the Flute solo.

protraction > 0: The significant part of the loudness tran-
sition starts late. This emphasizes the latter part of a
crescendo by a continuous increase of the slope. This
effect increases the expectation of a succeeding figure,
i.e. the crescendo leads to a target. In a decrescendo
the figure is present for a longer period of time and the
decrescendo itself is emphasized instead.

protraction = 0: The transition is balanced, i.e., neutral.
A possible explanation for the fact that those neutral
characteristic were found in the experimental results
but rarely in the live- and studio recordings might
be that in the experiments there was no musical con-
text. Some musicians complained about this, which in-
deed was an important condition of the task, for there
should be no extraneous interference.

An increase of the straightness parameter creates a more
curved characteristic. A light increase results in a more or-
ganic flow. If the protraction is not zero, the above men-
tioned characteristic gets emphasized. Though when the
straightness value becomes very large, the area of the dis-
tinct loudness change becomes smaller and can result in a
jump like transition, particularly in cases where the protrac-
tion is close to zero. The combination straightness = 1 and
protraction = 0 results in quasi terraced dynamics. These
are found in the later repetitions of the decrescendo in the
Flute concert.

Here it bears reminding that the straightness influences the
differences of the control points x2 and x3 of the Bézier
curve. Since both control points are restricted between zero

and one, the more distant the protraction value is from
zero, the less is the difference between x2 and x3; which
in turn influences the straightness. On the extreme poles
−1 and 1 there is no influence on the straightness anymore.
This means that if the character shall be distinctly modified
by the straightness, the amount of the latter must increase
when the protraction is not zero. This also explains the ex-
treme straightness values found in the data as well as the
anvil-like shape of the distributions in Figure 2.

In the experimental recordings there were some marginal dy-
namic transitions before the actual (de-)crescendi. A similar
phenomenon was already observed by Hähnel and Berndt [5],
who suggested that a slight and short preceding crescendo
enables the performer to mark the actual crescendo by a
clear soft start. Thus, the beginning of a dynamic tran-
sition can be stressed by a small terrace like step against
the direction of the actual transition. Because this principle
is, of course, admittedly speculative, further investigation is
needed.

The results of the metrical accent analysis were consistent
with the assumptions made at the outset of this Section.
A glance at Table 2 makes it clear that the accentuation
scheme follows the metrical hierarchy of the minuet. More-
over, the two bar and one bar structure in C6 is a striking
example for a metrical acceleration by means of accentu-
ation. The large differences in the last bar of a2 and C6
result from a compositional detail; the basso continuo is the
only instrument that continues playing after the first beat.
The whole ensemble only plays one note on the first beat
in the eighths bar. The mean differences are not, however,
substantially effected.

5. CONCLUSIONS
This paper developed an implementation of musical dynam-
ics. Therefore, a distinction between the macro and mi-
cro layer of dynamics has been introduced. Furthermore,
the special requirements for continuous dynamic transitions
over large distances and sequences of many notes as well as
within one single note were considered. These were mod-
elled by cubic Bézier curves that allow for a flexible shaping
of dynamic transitions and at the same time avoid indiffer-
entiabilities. An analyses of human musicians proved the
requirements for this large flexibility. If dynamics had been
bound on musical structure, the results would have been
much more alike in shape. Resemblance between different
interpretations are well known for timing, but regarding dy-
namics the ample individual freedom found in the recordings
is a striking evidence for the developed model since the anal-
ysis demonstrated that human performed dynamics can be
adequately approximated by the developed functions. Ulti-
mately, the parameterization for the different characteristics
was put down to some more intuitively editable descriptors.

Acknowledgments
We like to express thanks to all musicians for their partici-
pation in the recordings and for the inspiring dialogs.



6. REFERENCES
[1] A. Berndt. Decentralizing Music, Its Performance, and

Processing. In M. Schedel and D. Weymouth, editors,
Proc. of the Int. Computer Music Conf. (ICMC),
pages 381–388, New York, USA, June 2010.
International Computer Music Association, Stony
Brook University.

[2] A. Berndt and T. Hähnel. Expressive Musical Timing.
In Audio Mostly 2009: 4th Conf. on Interaction with
Sound—Sound and Emotion, pages 9–16, Glasgow,
Scotland, Sept. 2009. Glasgow Caledonian University,
Interactive Institute/Sonic Studio Pite̊a.

[3] R. B. Dannenberg. The Interpretation of MIDI
Velocity. In Proc. of the Int. Computer Music Conf.
(ICMC), pages 193–196, Tulane University, New
Orleans, USA, Nov. 2006. International Computer
Music Association.

[4] A. Friberg, R. Bresin, and J. Sundberg. Overview of
the kth rule system for musical performance. Advances
in Cognitive Psychology, Special Issue on Music
Performance, 2(2-3):145–161, 2006.

[5] T. Hähnel and A. Berndt. Expressive Articulation for
Synthetic Music Performances. In Proc. of New
Interfaces for Musical Expression (NIME) 2010, pages
277–282, Sydney, Australia, June 2010. University of
Technology Sydney.
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